语义分析(Semantic Parsing)调研

本文调研了语义解析(Semantic Parsing)的最新进展,重点关注2015年至2017年间ACL, EMNLP等会议上的论文。研究发现,使用seq-to-seq模型结合Attention-based Copying机制能显著提升模型性能,如在GEO数据集上从74.6提升至85.0。此外,还讨论了如何通过生成更多训练样例和不依赖于标注数据的方法来改进模型,如利用知识库和自然语言的概念联系进行匹配。近年来的趋势包括深度学习模型的应用,如seq-to-seq和Attention机制,以及与符号系统和先验知识的结合。" 107999207,9961673,制作便携版VScode并保持环境同步,"['visual studio code', 'portable', 'settings', 'extensions']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

semantic parsing 调研综述

任务说明

semantic parsing,语义解析,从名称上来说,是一种相对于语法分析级别上更为高层的分析。具体来说,通常指的是将自然语言转换成为机器可以理解的意义表示。这种机器可以理解的意义表示,通常指逻辑形式(Logic Forms)。以下给出一个范例说明:

NL(natural language): article published in 1950
CF(canonical form): article whose publication date is 1950
LF(logic form): get[[lambda,s,[filter,s,pubDate,=,1950]],article]
DT(derivation tree): s0(np0 (np1 (typenp0), cp0 (relnp0, entitynp0))
DS(derivation seqs): s0 np0 np1 typenp0 cp0 relnp0 entitynp0

本文调研角度,主要侧重于semantic parsing这个任务的当前进展形式如何,了解在各个常用的实验数据集上的the-state-of-the-art的方法发展等。

调研结果

本文涉及的论文集合主要包含的是2015~2017年在ACL,EMNLP等会议上的文章,其中做了一些筛选,可能有所遗漏。

在所调研的文章中,其中实验使用较广的数据集有:GEO,JOBs,WebQuestions,WebQuestionsSP,WIKITABLEQUESTIONS,OVERNIGHT等。接下来从在从各个数据集上出发,做一个 state-of-the-art的报告:

  • GEO DATA:89.3

    构建更多的训练数据:在Data recombination for neural semantic parsing这篇文章中,基于 seq-to-seq 的 RNN 模型,结合 Attention-based Copying 机制,对应的是将一些可能没有转换规则的word直接输出,而不是再去从softmax 层去获取输出。这一点可以将 RNN-based的方法从74.6提升至85.0。本文更为重要的贡献是从给定的初始训练集中,利用同步上下文文法,以及抽象实体等方式,生成更多的in-domain的训练样例,使得模型获得了提升。

  • JOBs DATA:90.0

    不要手工特征,DL使我 happy:在 Language to logical form with neural attention一文中,作者利用 RNN以及注意力机制构建了seq-to-seq 模型,已经在此基础上构建了一个 tree-decoder,即为 seq-to-tree。其中 seq-to-tree model 获得了在神经网络方法上的state-of-the-art,在此之前,Percy liang(2013) 一篇基于DCS-L 的方法拥有更好的性能,但需要一系列手工特征设计。

  • FREE:79.2

    标注,不存在的:Large-scale semantic parsing without question answer pairs。在之前提过的方案中,训练实例是<sentence,logical forms>,这种形式需要的代价往往较大;还有一些人提到的方案面向 question-answer pair,但本文更厉害,连 question-answer 的 pair 都不需要了。基于 Freebase,利用 CCG parser 将输入转为 semantic graph,利用了自然语言与知识库中的概念之间的联系,用该semantic graph去 Freebase 中去进行匹配获取 answer。

  • WebQuestions 52.5/52.6(ranking)

    分级搜索?知识库帮我pruning:在Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base中,定义query graph 为可以直接从知识库转为 logical form,定义 semantic parsing 的任务为生成 query graph。本文利用 knowledge base 进行预先的实体链指,利用 Deep CNN 来进行 question 和 predicate 的匹配程度计算,获得了当前的 state-of-the-art.

  • OVER

### 语义解析的概念 语义解析是指将自然语言输入转换成形式化的意义表示的过程。这种技术旨在捕捉句子或短语背后的深层含义,而不仅仅是表面的文字意思。通过构建结构化数据来代表文本的意义,可以更有效地处理各种下游任务。 在自然语言处理领域内,语义解析通常涉及识别实体、关系以及事件等要素,并将其映射到预定义的知识库或者逻辑框架之中[^1]。 ### 方法论 一种实现方式是利用神经网络自动生成正则表达式以体现查询的真实意图;这种方法能够在较少领域专业知识的情况下完成从自然语言向正式模式的语言转化工作。另一种常见的做法则是采用基于角色的长短时记忆(Long Short-Term Memory, LSTM) 层来进行高效的情景感知型口语理解。此方案特别强调考虑对话过程中前后的连续性,从而提高对于说话者目的的理解准确性[^3]。 此外,还有其他多种算法和技术可用于执行语义分析的任务,比如依赖于规则的方法、统计机器翻译模型或者是组合式的混合策略等等。随着深度学习的发展,越来越多的研究集中在如何更好地融合上下文信息方面,以便进一步提升系统的性能表现。 ### 应用场景 实际应用中,语义解析广泛应用于多个方向: - **智能问答系统**:通过对用户提问进行深入解读之后给出精准的回答; - **聊天机器人**:使计算机能够像人类一样参与日常交流互动; - **信息检索优化**:改进搜索引擎的结果质量,让用户更容易找到所需资料; - **自动化客服平台**:帮助企业自动响应常见咨询并提供解决方案。 例如,在某些情况下可以通过API接口调用第三方服务提供商所提供的功能模块(如Textalytics),以此获得诸如主题提取、情感倾向评估等功能的支持,进而增强应用程序的功能性和用户体验感[^2]。 ```python import requests def get_text_analysis(text): url = "https://api.textalytics.com/v4/entities" payload = {"text": text} headers = { 'Content-Type': 'application/json', 'Ocp-Apim-Subscription-Key': '<your_subscription_key>' } response = requests.post(url, json=payload, headers=headers) return response.json() ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值