
算法
文章平均质量分 84
盼海
13年的嵌入式底层开发经验,涉及智能硬件、工业控制等多个领域。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
欧拉方法:探索数值积分在微分方程求解中的应用
欧拉方法:探索数值积分在微分方程求解中的应用。原创 2025-01-09 11:20:09 · 752 阅读 · 0 评论 -
排序算法(六)--堆排序
堆排序(Heap Sort)作为一种基于堆数据结构的比较排序算法,以其时间复杂度稳定、实现相对简单而备受青睐原创 2024-11-23 09:10:33 · 820 阅读 · 0 评论 -
排序算法(五)--归并排序
归并排序采用分治法(Divide and Conquer)策略,其基本思想是将待排序的数组分成若干个子数组,分别对每个子数组进行排序,然后再将已排序的子数组合并成一个有序的数组。归并排序的时间复杂度为O(n log n),无论数据初始状态如何,其时间复杂度均保持不变,因此是一种较为稳定的排序算法。原创 2024-11-22 10:42:25 · 1313 阅读 · 0 评论 -
排序算法(四)--快速排序
快速排序 C语言实例。原创 2024-11-22 10:38:27 · 768 阅读 · 0 评论 -
排序算法(三)--插入排序
插入排序的基本思想是将数组中的元素逐一取出,然后将其插入到已经排好序的部分中的适当位置,直到整个数组排序完成。具体步骤如下:初始状态:假设数组的第一个元素已经排好序。从第二个元素开始:依次取出每个元素,与已经排好序的部分进行比较。找到插入位置:在已经排好序的部分中,从后向前扫描,找到该元素应该插入的位置。插入元素:将该元素插入到找到的位置,并将插入位置之后的所有元素向后移动一位。重复步骤:重复上述步骤,直到所有元素都被插入到适当位置。下面是一个用C语言实现的插入排序示例代码:#include原创 2024-11-21 18:41:32 · 453 阅读 · 0 评论 -
排序算法(二) --选择排序
选择排序作为一种简单的排序算法,在理解排序原理方面具有重要意义。尽管其时间复杂度较高,不适用于大规模数据的排序,但在小规模数据排序或学习排序算法原理时,选择排序仍然是一个很好的选择。原创 2024-11-20 08:00:00 · 1005 阅读 · 0 评论 -
排序算法(一)-冒泡排序
冒泡排序虽然简单易懂,但其时间复杂度较高,为O(n^2),不适合大规模数据的排序。然而,对于小规模数据或教学演示,冒泡排序仍然是一个很好的选择。原创 2024-11-20 08:00:00 · 930 阅读 · 0 评论 -
PID算法详解
在现代控制系统中,PID(比例-积分-微分)控制算法因其简单、有效和广泛的应用性,成为了工业控制领域的基石。PID控制器通过对误差信号的比例(P)、积分(I)和微分(D)三个部分的线性组合,实现对被控对象的精确控制。原创 2024-11-12 08:00:00 · 1035 阅读 · 0 评论 -
IMU 互补滤波算法姿态解算--c语言代码详解
四元数由四个元素组成,通常表示为q = [q0, q1, q2, q3],其中q0为实部,q1、q2、q3为虚部。姿态解算的目标是根据传感器的测量数据,实时更新四元数,从而得到载体的姿态角(俯仰角、滚转角和航向角)。互补滤波算法是一种简单有效的传感器数据融合方法,通过结合加速度计的稳定性来修正陀螺仪的积分漂移误差。将误差向量乘以比例系数(即加速度权重),并加到陀螺仪的测量值上,从而修正陀螺仪的积分漂移误差。其中,Ω为由陀螺仪测量得到的角速度构成的反对称矩阵,q为当前姿态四元数,q̇为四元数的导数。原创 2024-11-09 11:15:02 · 2513 阅读 · 1 评论 -
陀螺仪原理探析
陀螺仪的基本原理源于物理学中的陀螺效应。当一个高速旋转的物体(如陀螺)的旋转轴受到外力作用时,它会倾向于保持其旋转轴的方向不变,这就是陀螺效应。这一效应的产生,源于旋转物体所具有的角动量。角动量是描述物体绕某点旋转时惯性大小的物理量,当外力试图改变旋转物体的方向时,角动量会抵抗这种改变,从而保持旋转轴的稳定。基于这一原理,陀螺仪通过测量旋转物体的角速度或角加速度,来感知物体的姿态变化。这种感知能力使得陀螺仪在导航、稳定控制等领域具有广泛的应用价值。原创 2024-11-09 10:03:02 · 1292 阅读 · 0 评论 -
IMU参数指标:深入理解与应用
IMU通过集成加速度计、陀螺仪等传感器,能够实时测量物体的加速度、角速度等运动状态参数,为系统的导航、定位与控制提供关键数据。本文旨在探讨IMU的主要参数指标,分析这些指标对IMU性能的影响,并简要介绍其在相关领域的应用。通过实时测量无人机的加速度和角速度,IMU能够计算出无人机的姿态和位置信息,为飞行控制提供关键数据。量程的选择需根据应用场景的加速度范围来确定,过大的量程可能导致精度下降,而过小的量程则可能无法满足需求。IMU能够实时测量飞行器的姿态、速度和位置信息,为飞行器的导航和控制提供关键数据。原创 2024-11-08 09:38:26 · 2051 阅读 · 0 评论 -
常用滤波算法(十一)-卡尔曼滤波
卡尔曼滤波(Kalman Filtering)是一种高效的递归滤波器,广泛应用于信号处理、控制系统、导航与制导等领域。它通过预测和更新两个步骤,利用系统模型和观测数据,对动态系统的状态进行最优估计。原创 2024-11-08 09:28:51 · 1276 阅读 · 0 评论 -
常用滤波算法(十)-限幅消抖滤波法
限幅消抖滤波法是一种简单而有效的数字滤波算法,通过限制信号的变化范围和消除抖动,可以显著提高系统的稳定性和准确性。在实际应用中,我们还需要根据具体的系统需求和信号特性,对滤波算法进行进一步的优化和调整。原创 2024-11-07 09:18:13 · 1130 阅读 · 0 评论 -
常用滤波算法(九)-消抖滤波法
定义了滤波计数器的上限值N,可以根据实际需求进行调整。消抖滤波法是一种简单而有效的滤波技术,能够显著减少输入信号中的突变影响,提高系统的稳定性和可靠性。原创 2024-11-06 09:17:12 · 1013 阅读 · 0 评论 -
常用滤波算法(八)-加权递推平均滤波法
加权递推平均滤波法作为一种简单而有效的数字滤波技术,广泛应用于各种测量控制场合,特别适用于有较大纯滞后时间常数的对象和采样周期较短的系统。原创 2024-11-06 09:11:45 · 1705 阅读 · 0 评论 -
常用滤波算法(七)-一阶滞后滤波法
使用定义了滤波系数α,该值决定了滤波结果的灵敏度和稳定性。在实际应用中,需要根据具体需求调整该值。一阶滞后滤波法以其简单、高效的特性,在信号处理领域得到了广泛应用。通过调整滤波系数,可以在稳定性和灵敏度之间取得平衡,从而满足各种实际需求。在实际应用中,除了滤波系数外,还需要考虑采样频率、信号特性等因素,以确保滤波效果达到最佳。此外,对于复杂信号的处理,可能需要结合其他滤波方法或算法进行综合分析。原创 2024-11-05 08:52:54 · 1756 阅读 · 0 评论 -
常用滤波算法(六)-限幅平均滤波法
限幅平均滤波法作为一种结合了限幅滤波和平均滤波特性的算法,广泛应用于各种需要去除噪声和干扰的场合。原创 2024-11-05 08:48:52 · 909 阅读 · 0 评论 -
常用滤波算法(五)-中位值平均滤波法
中位值平均滤波法(Median-Average Filtering)作为一种结合了中位值滤波与平均滤波特点的混合滤波方法,广泛应用于去除噪声、保留信号特征等方面。原创 2024-11-04 10:08:23 · 1627 阅读 · 0 评论 -
常用滤波算法(四)-递推平均滤波法
在数据采集和处理过程中,噪声是一个常见的问题。噪声不仅影响数据的准确性,还可能掩盖数据中的有用信息。为了提取有用信号,需要对数据进行滤波处理。递推平均滤波法是一种简单而有效的滤波方法,通过计算一段时间内的数据平均值来平滑数据,达到滤波的目的。原创 2024-11-04 10:02:34 · 1383 阅读 · 0 评论 -
常用滤波算法(三)-算术平均滤波法
算术平均滤波法的基本思想是通过计算一定数量数据点的平均值来平滑数据。假设有一组数据序列,算术平均滤波法将选取该序列中的部分或全部数据点,计算它们的平均值,并将此平均值作为滤波后的输出。这种方法能够有效地减小数据中的随机波动,从而得到更为平稳的数据曲线。原创 2024-11-03 09:00:00 · 1236 阅读 · 0 评论 -
常用滤波算法(二)-中位值滤波法
中位值滤波法的基本思想是用信号中某一点附近的一个邻域内所有点的中位值来代替该点的值。这种方法能够有效地抑制信号中的随机噪声和脉冲噪声,因为它依赖于数据的排序,而非数据的算术平均值。因此,即使噪声幅度较大,中位值滤波也能保持良好的滤波效果。中位值滤波法是一种简单而有效的非线性滤波技术,特别适用于处理含有脉冲噪声的信号。本文通过一个C语言实例,详细展示了中位值滤波法的实现步骤,包括信号初始化、滤波窗口大小设置、内存分配与释放、中位值计算等关键步骤。希望这个实例能帮助读者更好地理解中位值滤波法的原理与应用。原创 2024-11-03 08:00:00 · 1497 阅读 · 0 评论 -
常用滤波算法(一)-限幅滤波法
限幅滤波法,作为一种简单而有效的滤波方法,通过限制信号的幅值范围,可以有效地去除噪声和干扰。本文将详细介绍限幅滤波法的原理,并通过C语言实例展示其实现过程。原创 2024-11-02 13:43:52 · 1911 阅读 · 0 评论