- 大部分情况下,我们用OLS(最小二乘法)来得出回归模型
- lm(formula,data)拟合回归模型,data是数据框
- y~x,左边为响应变量,右边为解释变量;+分隔预测变量
- :表示交互项,x:y
- *表示所有可能交互项的简洁方式,x*z=x+z+x:z
- ^表示交互达到某个次数,(x+z+w)^2=x+z+w+x:z+x:w+z:w
- .表示出因变量外的所有变量,不包含自变量间的交互项
- -从等式中移除某个变量
- -1删除截距项
- I()从算术的角度来解释括号中的元素,如I(x^2);在R中写回归模型,单个x^2是不能写的,必须这样写
- fun可以在表达式中用的数学函数,可用在因变量,log(y)~x+z
- 回归结果分析函数
- summary()
- coefficients()列出模型的系数
- confint()提供模型参数的置信区间
- fitted()拟合模型的预测,模型拟合的y值,fitted(模型)
- residuals()拟合模型的残差
- anova()比较多个拟合模型的方差分析,可以比较模型间是否有差异,根据奥卡姆剃刀原则,可以比较是否是最优最简模型
- vcov()模型参数的协方差矩阵
- AIC()赤池信息统计量
- plot()作4张图
- *abline()在前一个图上划直线;lines(x,y)根据点作平滑的曲线
- *car::scatterplot()更方便地绘制二元关系图
- predict()用拟合模型对新数据预测y
- *options(digits=2),设置小数点后2位
- 多元线性回归
- 首先,检查变
R教材6 回归
最新推荐文章于 2024-04-02 14:43:03 发布