矩阵分解模型MF如何进行在线更新

本文探讨了Matrix Factorization模型在评分预测领域的动态更新策略,通过分析新评分对模型的影响,提出了一种基于用户评论数量与评分预测准确性的更新方法,并介绍了Kernel函数在提升模型性能中的作用。实验证明,这种策略能够有效地近似使用所有评分训练得到的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前在评分预测方面,Matrix factorization模型是performance最好的一个模型。但它的缺点是整个模型训练完后是静态的。所谓静态是指模型无法对更新做出灵活的改变。而更新在现实情境下十分常见的,比如用户新评价了一个物品,一个新用户注册了,一个新物品被添加了。这就要求模型能较好地反映出这些变化。那为什么即使用SGD训练模型,也不能直接在评分r_ij对应的用户i特征向量和物品j特征向量更新呢?因为对SGD来说,顺序很重要。它训练的过程是:

for i in 1:总共要迭代的次数

   for j in 1:物品个数
           使用物品 j 更新模型
   end

end


因此,拿新来的评分直接更新原有的模型会产生不同的更新序列。[1]指出,对于现有的评分集合R和新来的评分r,分别使用R和R∪r更新模型,产生的模型整体上差别应该不大;而且若该评分对应的用户(物品)已给出(获得)很多的评分,那么该用户(物品)对应的特征向量也不需要更新。结合上述两点,要依据新评分更新模型时,只用更新对应用户(物品)的参数,而保持其他参数不变即可。


但是如何判断要不要依据新评分更新模型呢?作者提出了两点:①更新的概率随用户评论增多而减少②看现有评分能不能足够好地预测该新评分。若可以则忽略该新评分,否则更新。个人觉得第二种方法十分reasonable,因为就算用户评论的物品再多,没有代表性的话,对用户特征贡献度也是不大的。作者在Netflix和Moivelen上的实验显示,这样的更新策略能很好地近似使用所有评分训练得到的模型。


最后,值得指出的是作者在MF中引入了kernel函数。Kernel函数本身可以是线性的,多项式的,或者是RBF等等。从论文的数据看,logistic kernel在文中获得了最好的性能。


参考文献:

[1]Online-Updating Regularized Kernel Matrix Factorization Models for Large-Scale Recommender Systems

### MF矩阵分解模型的概念 矩阵分解Matrix Factorization, MF)是一种经典的机器学习方法,主要用于处理推荐系统中的评分预测问题。其核心思想是将用户-物品交互矩阵 \( R \) 分解成两个低秩矩阵:用户隐特征矩阵 \( P \) 和物品隐特征矩阵 \( Q \)[^1]。通过这种分解方式,可以捕捉到潜在的用户偏好和物品属性。 #### 实现过程 为了实现MF模型,通常采用如下步骤: 1. **初始化参数** 用户隐向量矩阵 \( P \in \mathbb{R}^{m \times k} \),以及物品隐向量矩阵 \( Q \in \mathbb{R}^{n \times k} \),其中 \( m \) 是用户的数量,\( n \) 是物品的数量,\( k \) 表示隐因子维度[^3]。 2. **定义损失函数** 常见的目标是最小化均方误差(MSE),即: \[ L(P,Q)=\sum_{u,i}(r_{ui}-p_uq_i^\top)^2+\lambda(\|P\|^2_F+\|Q\|^2_F) \] 这里 \( r_{ui} \) 表示用户 \( u \) 对物品 \( i \) 的真实评分,\( p_u q_i^\top \) 则表示预测评分,最后一项为正则化项用于防止过拟合。 3. **优化策略** 使用随机梯度下降法 (SGD) 或其他优化器更新参数直到收敛。 ```python import torch from torch import nn class MatrixFactorization(nn.Module): def __init__(self, num_users, num_items, latent_dim=10): super(MatrixFactorization, self).__init__() self.user_factors = nn.Embedding(num_users, latent_dim) self.item_factors = nn.Embedding(num_items, latent_dim) def forward(self, user_id, item_id): user_embedding = self.user_factors(user_id) item_embedding = self.item_factors(item_id) prediction = (user_embedding * item_embedding).sum(dim=-1) return prediction ``` 上述代码展示了如何利用 PyTorch 构建一个简单的MF模型。 --- ### 应用场景 MF模型因其强大的泛化能力和解决数据稀疏性的特点,在多个实际场景中有广泛应用[^4]: 1. **电影推荐** - Netflix Prize竞赛中提出的SVD++就是一种改进版的MF算法,能够有效提升推荐质量。 2. **电商个性化商品推荐** - 如亚马逊的商品推荐引擎会分析历史购买记录并运用MF技术提供个性化的购物建议。 3. **社交网络好友推荐** - LinkedIn等平台可能借助MF理解成员间的关系模式从而给出更精准的好友连接提议。 4. **音乐/书籍推荐服务** - Spotify或者Goodreads这样的平台上也依赖类似的机制帮助用户发现新的兴趣内容。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值