Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 82272 | Accepted: 14296 |
Description
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
Output
Sample Input
1 2 3 4 5
Sample Output
4
Source
扩展欧几里得算法通常解决三种问题:
1:求解不定方程;
2:求解模的逆元;
3:求解同余方程;
设a和b不全为0,则存在整数x和y,使得:
gcd(a,b)=x*a+y*b;
对于一个二元一次方程Ax+By=C(A,B已知),可以用扩展欧几里得算法求的其中的一个解x(或者y),不过所求的解并不是最小的,也不是最大的,只不过是方程的一个。下面给出两种扩展欧几里得的具体代码。
第一种是迭代的扩展欧几里得算法:
- int exgcd(int A,int &x,int B,int &y)
- {
- int x1,y1,x0,y0;
- x0=1;y0=0;
- x1=0;y1=1;
- int r=(A%B+B)%B;
- int q=(A-r)/B;
- x=0;y=1;
- while(r)
- {
- x=x0-q*x1;
- y=y0-q*y1;
- x0=x1;
- y0=y1;
- x1=x;y1=y;
- A=B;B=r;r=A%B;
- q=(A-r)/B;
- }
- return B;
- }
第二种是递归的欧几里得算法:
- long long extended_euclidean(long long n, long long m, long long &x, long long &y) {
- if (m == 0) {
- x = 1; y = 0; return n;
- }
- long long g = extended_euclidean(m, n % m, x, y);
- long long t = x - n / m * y;
- x = y;
- y = t;
- return g;
- }
其中,传过来x和y是新定义的两个变量,无初值也没有赋初值,返回的B就是Ax+By=C这个方程的一个解。
那么对于这个题来说第一只青蛙的坐标是x+m*t,第二只青蛙的坐标是y+n*t。它们相遇的充要条件是:x+m*t-y-n*t=p*L(p属于Z),即
(n-m)*t+L*p=x-y。L>0.设A=n-m,B=x-y,就转化为求A*t+L*p=B的最小t(t>0)。即求一次同余方程A*t=B%L的最小整数解。
1:用欧几里得算法求解A*t+L*p=B。即exgcd(A,&x,L,&y)则得到的值X是一个解,但不是最后的解。
2:若B%gcd(A,L)==0,则有解。
3:设M=gcd(A,L),X=X*(x-y)/M,然后(X%(L/M)+L/M)%(L/M)就是最后的解,也就是最小的t。
- #include<stdio.h>
- long long x,y,m,n,l;
- //扩展欧几里得算法
- long long exgcd(long long m,long long &x,long long n,long long &y)
- {
- long long x1,y1,x0,y0;
- x0=1;y0=0;
- x1=0;y1=1;
- long long r=(m%n+n)%n;
- long long q=(m-r)/n;
- x=0;y=1;
- while(r)
- {
- x=x0-q*x1;
- y=y0-q*y1;
- x0=x1;
- y0=y1;
- x1=x;y1=y;
- m=n;n=r;r=m%n;
- q=(m-r)/n;
- }
- return n;
- }
- int main()
- {
- while(scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l)!=EOF)
- {
- long long ar,br;
- long long a=exgcd(n-m,ar,l,br);//a为二元一次线性方程的一个解,但不是最小解
- //printf("%lld\n",a);
- if((x-y)%a||m==n)
- printf("Impossible\n");
- else//找出方程的最小解t
- {
- long long s=l/a;
- ar=ar*((x-y)/a);
- ar=(ar%s+s)%s;
- printf("%lld\n",ar);
- }
- }
- return 0;
- }