172. Factorial Trailing Zeroes

本文探讨如何高效计算n!的尾随零的数量,并提供了一种基于对数时间复杂度的解决方案。通过逐步减少计算步骤,最终实现了一个简洁且高效的算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

172. Factorial Trailing Zeroes
Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in logarithmic time complexity.

首先这个题目的意思就是求n!这个数后面有几个0?题目限制就是时间效率,你遍历当然是不行的,比如:

class Solution {
public:
    int trailingZeroes(int n) {
       int num2=0,num5=0;//num2记录2因数的个数,num5记录5因数的个数
       for(int i=1;i<=n;i++)
       {
           int tmp=i;
            while((tmp%2)==0)
            {
                num2++;
                tmp/=2;
            }
            while((tmp%5)==0)
            {
                num5++;
                tmp/=5;
            }
       }
       return min(num2,num5);//一个2和一个5组成一个10,故返还两者之间的小值
    }
};

上面的代码是我直接能想到的,测试当然不能通过,后来突然意识到,2的因数一定比5的因数多,所以我们可以直接省略求解2因数这一步,代码如下:

class Solution {
public:
    int trailingZeroes(int n) {
       int num5=0;
       for(int i=1;i<=n;i++)
       {
           int tmp=i;
            while((tmp%5)==0)
            {
                num5++;
                tmp/=5;
            }
       }
       return num5;
    }
};

但是时间效率还是能达到,这就难为小弟了,经高人指点,突然发现了下面高效的解决办法:

class Solution {
public:
    int trailingZeroes(int n) {
       int num5=0;
       while(n)
       {
           num5+=n/5;
           n/=5;
       }
        return num5;
    }
};

上面代码的核心原理如下:
5=[n/5]+[n/52]+...+[n/5k]
其中5k<=n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值