Audio-预训练模型-2019:vq-wav2vec

vq-wav2vec是基于wav2vec的自我监督学习方法,它通过量化模块将连续的语音特征转化为离散表示。文章探讨了Gumbel softmax和K-Means两种量化策略,码本在此过程中扮演关键角色,类似NLP中的词典。此技术在语音预训练中不同于NLP,因为其输入是连续的音频而非离散的tokens,对于自动语音识别(ASR)的自监督学习具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations - NASA/ADS

本文基于wav2vec,将连续特征z通过提出的量化模块,变成离散特征z‘,实现特征空间从无限的连续到有限的离散的转换过程。

文中提出了两种量化方法,Gumbel softmax和K-Means,如下图。 其中,左右两个部分中的 e1 … ev,就是码本(记录特征集,可以理解为 BERT 中的词表),Gumbel通过逻辑值最大化(回传时使用Gumbel softmax来保证可导)找对应码本条,K-Means通过计算与码本距离来找最小距离的码本条。
 

在这里插入图片描述

codeword:VQ(Vector Quantiz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值