AI编译器技术剖析(一)-概述

本文介绍了AI编译器的背景,指出AI编译器旨在解决模型部署的复杂性和性能优化问题。AI编译器将AI模型转换为部署形式,优化目标包括集成与依赖最小化、硬件加速和通用优化。文章还探讨了AI编译器与传统编译器的异同,并概述了AI编译器的前端和后端架构及其优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,AI应用程序已经无处不在。比如:智能家居设备由自然语言处理(NLP)和语音识别模型驱动,自动驾驶技术以计算机视觉模型为支柱。通常这些AI模型会部署在云平台、专用计算设备以及物联网传感器的内置微型芯片。

因此,我们在进行AI应用落地时,需要将AI模型从研发阶段转而部署到多种多样的生产环境,同时,也需要相当多的繁重工作。即使对于我们最熟悉的环境(例如:在 GPU 上),部署包含非标准算子的深度学习模型仍然需要大量的工程。而为了解决这些繁琐的问题,AI 编译器应运而生。

本系列将分享 AI 编译器的技术原理,本文为该系列第一篇文章,将简要介绍 AI 编译器诞生的背景、与传统编译器的区别、AI 编译器前后端等。

AI 编译器产生的背景

早期神经网络部署的侧重点在于框架和算子库。神经网络由数据流图来表示,图上的节点就是算子(比如:Conv2D、BatchNorm、Softmax),节点之间的连接代表 Tensor。由于数据流图很直观,很多框架的 Runtime 采用了类似 Caffe 的方式,运行时通过一定的顺序(例如:直接 Post-Order DFS)分配 Tensor、调用算子库就行了,优化重点在于优化算子库的性能。

随着时间的发展,这种直观的部署方式,也逐渐暴露出一些问题。

  • 越来越多的新算子被提出,算子库的开发和维护工作量越来越大。比如:提出一个新的 Swish 算子,算子库就要新增 Swish 的实现,还要有优化、测试。Swish 由一些基础的一元、二元算子组成。
  • NPU 的爆发导致模型性能可移植性成为一种刚
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值