§ 7 矩阵的有理标准形
前一节中证明了复数域上任一矩阵 A\boldsymbol{A}A
可相似于一个若尔当形矩阵, 这一节将对任意数域 PPP 来讨论类似的问题.
我们证明 PPP 上任一矩阵必相似于一个有理标准形矩阵.
定义 8 对数域 PPP 上的一个多项式
d˙(λ˙)=λn˙+a1λn−1+⋯+an,\dot{d}(\dot{\lambda})=\dot{\lambda^{n}}+a_{1} \lambda^{n-1}+\cdots+a_{n},d˙(λ˙)=λn˙+a1λn−1+⋯+an,
称矩阵
A=(00⋯0−an10⋯0−an−101⋯0−an−2⋮⋮⋮⋮00⋯1−a1)\boldsymbol{A}=\left(\begin{array}{ccccc} 0 & 0 & \cdots & 0 & -a_{n} \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ 0 & 1 & \cdots & 0 & -a_{n-2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{1} \end{array}\right)A=
010⋮0001⋮0⋯⋯⋯⋯000⋮1−an−an−1−an−2⋮−a1
为多项式 d(λ)d(\lambda)d(λ) 的友矩阵.
容易验证, A\boldsymbol{A}A 的 (即特征矩阵
λE−A\lambda \boldsymbol{E}-\boldsymbol{A}λE−A 的) 不变因子是
1,1,⋯ ,⏟n=1↑,d(λ)\underbrace{1,1, \cdots,}_{n=1 \uparrow}, d(\lambda)n=1↑
1,1,⋯,,d(λ) (见习题 3 ).定义
9 准对角矩阵
A=(A1A2⋱A∗),\boldsymbol{A}=\left(\begin{array}{llll} \boldsymbol{A}_{1} & & & \\ & \boldsymbol{A}_{2} & & \\ & & \ddots & \\ & & & \boldsymbol{A}_{*} \end{array}\right),A=
A1A2⋱A∗
,
其中 AiA_{i}Ai 分别是数域 PPP 上某些多项式
di(λ)(i=1,2,⋯ ,s)d_{i}(\lambda)(i=1,2, \cdots, s)di(λ)(i=1,2,⋯,s) 的友矩阵, 且满足 di(λ)d_{i}(\lambda)di(λ)
∣d2(λ)∣⋯∣d1(λ)\left|d_{2}(\lambda)\right| \cdots \mid d_{1}(\lambda)∣d2(λ)∣⋯∣d1(λ), 称为 PPP
上的有理标准形矩阵.
引理 (2) 中矩阵 A\boldsymbol{A}A 的不变因子为
1,1,⋯ ,1,d1(λ),d2(λ),⋯ ,d,(λ)1,1, \cdots, 1, d_{1}(\lambda), d_{2}(\lambda), \cdots, d_{,}(\lambda)1,1,⋯,1,d1(λ),d2(λ),⋯,d,(λ),
其中 1 的个数等于
d1(λ),d2(λ),⋯ ,ds(λ)d_{1}(\lambda), d_{2}(\lambda), \cdots, d_{s}(\lambda)d1(λ),d2(λ),⋯,ds(λ) 的次数之和减去
sss.
证明
λE−A=(λE1−A1λE2−A2⋱λE,−A4).\lambda E-A=\left(\begin{array}{llll} \lambda E_{1}-\boldsymbol{A}_{1} & & & \\ & \lambda \boldsymbol{E}_{2}-\boldsymbol{A}_{2} & & \\ & & \ddots & \\ & & & \lambda \boldsymbol{E}_{,}-\boldsymbol{A}_{4} \end{array}\right) .λE−A=
λE1−A1λE2−A2⋱λE,−A4
.
由于每个 λEi−Ai\lambda E_{i}-A_{i}λEi−Ai 的不变因子为
1,⋯ ,1,di(λ)1, \cdots, 1, d_{i}(\lambda)1,⋯,1,di(λ), 故可用初等变换把它变成
(11⋱di(λ)),\left(\begin{array}{llll} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & d_{i}(\lambda) \end{array}\right),
11
高等代数(八)-线性变换07:矩阵的有理标准形
于 2024-02-06 00:08:38 首次发布