被积函数或辅助函数是多值解析函数的情形,一定要适当割开平面,使其能分出单值解析分支,才能应用柯西积分定理或柯西留数定理来求出给定的积分的值.
例 6.18
试计算积分
∫0+∞lnx(1+x2)2 dx.\int_{0}^{+\infty} \cfrac{\ln x}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x .∫0+∞(1+x2)2lnx dx.
解 以原点 OOO 为圆心, rrr 及 RRR 为半径, 在 xxx 轴上方画两个半圆周, rrr可充分小, RRR 可充分大. 此两个半圆周与 xxx 轴上的 ABA BAB 及
B′A′B^{\prime} A^{\prime}B′A′ 二线段构成一周线 CCC (如图 6.13).
辅助函数
f(z)=lnz(1+z2)2f(z)=\cfrac{\ln z}{\left(1+z^{2}\right)^{2}}f(z)=(1+z2)2lnz
在 CCC 内部仅有一个二阶极点 z=iz=\mathrm{i}z=i, 而其支点 z=0z=0z=0 及z=∞z=\inftyz=∞ 已不属于 CCC 的内部. 故 f(z)f(z)f(z) 在 CCC 所围的有界闭域上, 除z=iz=\mathrm{i}z=i 外, 是单值解析的. 令
φ(z)=(z−i)2lnz(z+i)2(z−i)2=lnz(z+i)2,\varphi(z)=(z-\mathrm{i})^{2} \cfrac{\ln z}{(z+\mathrm{i})^{2}(z-\mathrm{i})^{2}}=\cfrac{\ln z}{(z+\mathrm{i})^{2}},φ(z)=(z−i)2(z+i)2(z−i)2lnz=(z+i)2lnz,
则
φ′(z)=1z⋅1(z+i)2−2(z+i)3lnz,Resz=if(z)=(6.5)φ′(i)=−14i−2−8i⋅πi2=π+2i8.\begin{array}{c} \varphi^{\prime}(z)=\cfrac{1}{z} \cdot \cfrac{1}{(z+\mathrm{i})^{2}}-\cfrac{2}{(z+\mathrm{i})^{3}} \ln z, \\ \operatorname{Res}_{z=\mathrm{i}} f(z) \stackrel{(6.5)}{=} \varphi^{\prime}(\mathrm{i})=-\cfrac{1}{4 \mathrm{i}}-\cfrac{2}{-8 \mathrm{i}} \cdot \cfrac{\pi \mathrm{i}}{2}=\cfrac{\pi+2 \mathrm{i}}{8} . \end{array}φ′(z)=z1⋅(z+i)21−(z+i)32lnz,Resz=if(z)=(6.5)φ′(i)=−4i1−−8i2⋅2πi=8π+2i.
由留数定理,
∫BMB′^+∫B′A′+∫ANA^+∫AB=∫Clnz(1+z2)2 dz=2πi⋅π+2i8=−π2+π24i.(6.22)\begin{aligned} \int_{\widehat{B M B^{\prime}}}+\int_{B^{\prime} A^{\prime}}+\int_{\widehat{A N A}}+\int_{A B} & =\int_{C} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z \\ & =2 \pi \mathrm{i} \cdot \cfrac{\pi+2 \mathrm{i}}{8}=-\cfrac{\pi}{2}+\cfrac{\pi^{2}}{4} \mathrm{i} . \quad\quad(6.22) \end{aligned}∫BMB′ +∫B′A′+∫ANA +∫AB=∫C(1+z2)2lnz dz=2πi⋅8π+2i=−2π+4π2i.(6.22)
下面分别计算(6.22)左边各个积分:
(1) 因lim∣z∣→+∞zlnz(1+z2)2=0\lim \limits_{|z| \rightarrow+\infty} z \cfrac{\ln z}{\left(1+z^{2}\right)^{2}}=0∣z∣→+∞limz(1+z2)2lnz=0,由引理6.1 即知
limR→+∞∫BMB′^lnz(1+z2)2 dz=0.\lim \limits_{R \rightarrow+\infty} \int_{\widehat{B M B^{\prime}}} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=0 .R→+∞lim∫BMB′ (1+z2)2lnz dz=0.
(2) 因limz∣→0zlnz(1+z2)2=0\lim \limits_{z \mid \rightarrow 0} z \cfrac{\ln z}{\left(1+z^{2}\right)^{2}}=0z∣→0limz(1+z2)2lnz=0,故由引理 6.3 即知
lim→→0∫A′NA^lnz(1+z2)2 dz=0.\lim \limits_{\rightarrow \rightarrow 0} \int_{\widehat{A^{\prime} N A}} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=0 .→→0lim∫A′NA (1+z2)2lnz dz=0.
(3) 令 ABA BAB 上的 z=xei⋅0(x>0)z=x \mathrm{e}^{i \cdot 0}(x>0)z=xei⋅0(x>0), 则
limR→+∞∫ABlnz(1+z2)2 dz=∫0+∞lnx(1+x2)2 dx.\lim \limits_{R \rightarrow+\infty} \int_{A B} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=\int_{0}^{+\infty} \cfrac{\ln x}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x .R→+∞lim∫AB(1+z2)2lnz dz=∫0+∞(1+x2)2lnx dx.
(4) B′A′B^{\prime} A^{\prime}B′A′ 上的 z=xeix(x>0)z=x \mathrm{e}^{\mathrm{ix}}(x>0)z=xeix(x>0),于是
lnz=lnx+iπ,dz=eiπdx=−dx.\ln z=\ln x+\mathrm{i} \pi, \quad \mathrm{d} z=\mathrm{e}^{\mathrm{i} \pi} \mathrm{d} x=-\mathrm{d} x .lnz=lnx+iπ,dz=eiπdx=−dx.
故
limx→+∞R→+∞∫B′A′lnz(1+z2)2 dz=∫+∞0lnx+iπ(1+x2)2(−dx)=∫0+∞lnx+iπ(1+x2)2 dx.\begin{aligned} \lim \limits_{\substack{x \rightarrow+\infty \\ R \rightarrow+\infty}} \int_{B^{\prime} A^{\prime}} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z & =\int_{+\infty}^{0} \cfrac{\ln x+\mathrm{i} \pi}{\left(1+x^{2}\right)^{2}}(-\mathrm{d} x) \\ & =\int_{0}^{+\infty} \cfrac{\ln x+\mathrm{i} \pi}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x . \end{aligned}x→+∞R→+∞lim∫B′A′