复变函数论6-留数理论及其应用2-1-用留数定理计算实积分6:应用多值函数的积分

本文通过多个例子详细讲解了如何利用留数理论计算实积分,涉及多值函数的处理、柯西积分定理和留数定理的应用,通过解析分支和支割线的选择,解决复变函数在实轴上的积分问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

被积函数或辅助函数是多值解析函数的情形,一定要适当割开平面,使其能分出单值解析分支,才能应用柯西积分定理或柯西留数定理来求出给定的积分的值.

例 6.18
试计算积分

∫0+∞ln⁡x(1+x2)2 dx.\int_{0}^{+\infty} \cfrac{\ln x}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x .0+(1+x2)2lnx dx.

解 以原点 OOO 为圆心, rrrRRR 为半径, 在 xxx 轴上方画两个半圆周, rrr可充分小, RRR 可充分大. 此两个半圆周与 xxx 轴上的 ABA BAB
B′A′B^{\prime} A^{\prime}BA 二线段构成一周线 CCC (如图 6.13).

辅助函数

f(z)=ln⁡z(1+z2)2f(z)=\cfrac{\ln z}{\left(1+z^{2}\right)^{2}}f(z)=(1+z2)2lnz

在这里插入图片描述
CCC 内部仅有一个二阶极点 z=iz=\mathrm{i}z=i, 而其支点 z=0z=0z=0z=∞z=\inftyz= 已不属于 CCC 的内部. 故 f(z)f(z)f(z)CCC 所围的有界闭域上, 除z=iz=\mathrm{i}z=i 外, 是单值解析的. 令

φ(z)=(z−i)2ln⁡z(z+i)2(z−i)2=ln⁡z(z+i)2,\varphi(z)=(z-\mathrm{i})^{2} \cfrac{\ln z}{(z+\mathrm{i})^{2}(z-\mathrm{i})^{2}}=\cfrac{\ln z}{(z+\mathrm{i})^{2}},φ(z)=(zi)2(z+i)2(zi)2lnz=(z+i)2lnz,

φ′(z)=1z⋅1(z+i)2−2(z+i)3ln⁡z,Res⁡z=if(z)=(6.5)φ′(i)=−14i−2−8i⋅πi2=π+2i8.\begin{array}{c} \varphi^{\prime}(z)=\cfrac{1}{z} \cdot \cfrac{1}{(z+\mathrm{i})^{2}}-\cfrac{2}{(z+\mathrm{i})^{3}} \ln z, \\ \operatorname{Res}_{z=\mathrm{i}} f(z) \stackrel{(6.5)}{=} \varphi^{\prime}(\mathrm{i})=-\cfrac{1}{4 \mathrm{i}}-\cfrac{2}{-8 \mathrm{i}} \cdot \cfrac{\pi \mathrm{i}}{2}=\cfrac{\pi+2 \mathrm{i}}{8} . \end{array}φ(z)=z1(z+i)21(z+i)32lnz,Resz=if(z)=(6.5)φ(i)=4i18i22πi=8π+2i.

由留数定理,

∫BMB′^+∫B′A′+∫ANA^+∫AB=∫Cln⁡z(1+z2)2 dz=2πi⋅π+2i8=−π2+π24i.(6.22)\begin{aligned} \int_{\widehat{B M B^{\prime}}}+\int_{B^{\prime} A^{\prime}}+\int_{\widehat{A N A}}+\int_{A B} & =\int_{C} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z \\ & =2 \pi \mathrm{i} \cdot \cfrac{\pi+2 \mathrm{i}}{8}=-\cfrac{\pi}{2}+\cfrac{\pi^{2}}{4} \mathrm{i} . \quad\quad(6.22) \end{aligned}BMB +BA+ANA +AB=C(1+z2)2lnz dz=2πi8π+2i=2π+4π2i.(6.22)

下面分别计算(6.22)左边各个积分:
(1) 因lim⁡∣z∣→+∞zln⁡z(1+z2)2=0\lim \limits_{|z| \rightarrow+\infty} z \cfrac{\ln z}{\left(1+z^{2}\right)^{2}}=0z+limz(1+z2)2lnz=0,由引理6.1 即知

lim⁡R→+∞∫BMB′^ln⁡z(1+z2)2 dz=0.\lim \limits_{R \rightarrow+\infty} \int_{\widehat{B M B^{\prime}}} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=0 .R+limBMB (1+z2)2lnz dz=0.

(2) 因lim⁡z∣→0zln⁡z(1+z2)2=0\lim \limits_{z \mid \rightarrow 0} z \cfrac{\ln z}{\left(1+z^{2}\right)^{2}}=0z∣→0limz(1+z2)2lnz=0,故由引理 6.3 即知

lim⁡→→0∫A′NA^ln⁡z(1+z2)2 dz=0.\lim \limits_{\rightarrow \rightarrow 0} \int_{\widehat{A^{\prime} N A}} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=0 .→→0limANA (1+z2)2lnz dz=0.

(3) 令 ABA BAB 上的 z=xei⋅0(x>0)z=x \mathrm{e}^{i \cdot 0}(x>0)z=xei0(x>0), 则

lim⁡R→+∞∫ABln⁡z(1+z2)2 dz=∫0+∞ln⁡x(1+x2)2 dx.\lim \limits_{R \rightarrow+\infty} \int_{A B} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=\int_{0}^{+\infty} \cfrac{\ln x}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x .R+limAB(1+z2)2lnz dz=0+(1+x2)2lnx dx.

(4) B′A′B^{\prime} A^{\prime}BA 上的 z=xeix(x>0)z=x \mathrm{e}^{\mathrm{ix}}(x>0)z=xeix(x>0),于是

ln⁡z=ln⁡x+iπ,dz=eiπdx=−dx.\ln z=\ln x+\mathrm{i} \pi, \quad \mathrm{d} z=\mathrm{e}^{\mathrm{i} \pi} \mathrm{d} x=-\mathrm{d} x .lnz=lnx+iπ,dz=eiπdx=dx.

lim⁡x→+∞R→+∞∫B′A′ln⁡z(1+z2)2 dz=∫+∞0ln⁡x+iπ(1+x2)2(−dx)=∫0+∞ln⁡x+iπ(1+x2)2 dx.\begin{aligned} \lim \limits_{\substack{x \rightarrow+\infty \\ R \rightarrow+\infty}} \int_{B^{\prime} A^{\prime}} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z & =\int_{+\infty}^{0} \cfrac{\ln x+\mathrm{i} \pi}{\left(1+x^{2}\right)^{2}}(-\mathrm{d} x) \\ & =\int_{0}^{+\infty} \cfrac{\ln x+\mathrm{i} \pi}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x . \end{aligned}x+R+limBA

现代数学基础31复变函数论 作者:萧荫堂,陈志华,钟家庆 著 出版时间:2013年版 内容简介   《现代数学基础31复变函数论》包含复变函数研究中分析、层论与复几何这三个最主要方面的主要研究成果与方法。较之国内外相应的复变函数著作,《现代数学基础31复变函数论》的内容更全面,而且通过阅读本书,读者可以充分了解复变函数与几何、拓扑、方程和分析等相关分支的交叉关系。《现代数学基础31复变函数论》的撰写尽可能地适于自学之用,主要读者对象为数学系高年级本科生、研究生与青年教师,同时也可供其他理工科专业本科生、研究生、青年教师及相关工程技术人员学习参考之用。 目录 第一章 全纯域与全纯凸域 §1.1 全纯域 §1.2 全纯凸域 第二章 拟凸域 §2.1 拟凸域 §2.2 次调和函数 第三章 L2估计 §3.1 L2方法 §3.2 Levi问题 §3.3 Cousin问题与除法问题 §3.3.1 第一Cousin问题 §3.3.2 第二Cousin问题 §3.3.3 除法问题 第四章 层与上同调 §4.1 层 §4.2 层的上同调群 第五章 δ方程解的一致估计 第六章 解析簇 §6.1 全纯函数的局部环 §6.2 Hilbert零点定理 第七章 凝聚层 §7.1 凝聚层 §7.2 0ka定理 第八章 圆域的上同调论 §8.1 Dolbeault引理 §8.2 解析层的投影分解 §8.3 Cartan引理 第九章 Stein空间 §9.1 0ka定理 §9.2 Stein空间 §9.3 Cartan定理A,B 第十章 Hermite流形与Hermite向量丛 §10.1 全纯向量丛 §10.2 Hermite流形的几何 第十一章 Hodge定理 §11.1 Hodge定理 §11.2 Rellich定理,Garding不等式和Sobolev引理的证明 第十二章 消灭定理与嵌入定理 参考文献
复变函数论基础 出版时间:2014年版 丛编项: 高等学校教材 内容简介   复变函数理论是当代数学研究的主流方向之一,发展非常迅速。《复变函数论基础/高等学校教材》是学习复变函数理论的一本入门教材,内容分为六章:复变数全纯函数、全纯映射、正交系与Bergman核函数、Cauchy积分公式、全纯凸域和拟凸域、a问题及其应用。凡学过数学分析、线性代数、复变函数函数及少许泛函分析的读者都能读懂《复变函数论基础/高等学校教材》。有了《复变函数论基础/高等学校教材》的知识,再深入到复变的各个领域会方便得。本书可作为数学系高年级学生和研究生的教材,也可作为相关领域研究人员的参考书。本书于1996年出版,恰逢高等教育出版社建社60周年,甲午重印,以飨读者。 目录 第一章 复变数全纯函数 §1.1 全纯函数 §1.2 圆柱的Cauchy积分公式及其应用 §1.3 Hartogs现象 §1.4 球和球面上的积分 §1.5 次调和函数和Hartogs定理 §1.6 Riemann可去奇点定理和Rado定理 注记 第二章 全纯映射 §2.1 全纯映射的导数 §2.2 单叶全纯映射 §2.3 H.Cartan定理和球的全纯自同构 §2.4 Schwarz引理 §2.5 圆柱和球上的星形映射和凸映射 §2.6 球上星形映射和凸映射的增长定理和掩盖定理 §2.7 球上凸映射的偏差定理 §2.8 双全纯映射族的凸性半径 注记 第三章 正交系与Bergman核函数 §3.1 (L*2∩H)(Ω)上存在完备的正交系 §3.2 有界圆型域的完备正交系 §3.3 Bergman核函数 §3.4 典型域的核函数 §3.5 Bergman度量 注记 第四章 Cauchy积分公式 §4.1 球的Cauchy积分公式 §4.2 特征边界上的规范正交系 §4.3 有界星形圆型域的Cauchy积分公式 §4.4 典型域的Cauchy积分公式 §4.5 微分形式和Stokes公式 §4.6 单位分解 §4.7 复平面上非齐次Cauchy积分公式及其应用 §4.8 Bochner-Martinelli积分公式 注记 第五章 全纯凸域和拟凸域 §5.1 全纯凸域 §5.2 Cartan-Thullen定理 §5.3 Levi拟凸域 §5.4 重次调和函数 §5.5 拟凸域 注记 第六章 a问题及其应用 §6.1 两项准备知识 §6.2 把a问题归结为L2估计 §6.3 a问题解的存在性定理 §6.4 a问题解的正则性 §6.5 Levi问题 §6.6 Cousin问题和除法问题 §6.7 a问题解的一致估计 注记 参考文献 符号索引 名词索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值