前因 在机器学习/深度学习的很多任务中,我们通常会面临着两个样本之间相似度的比较。通常常用的两种度量方式为欧氏距离与余弦距离,那么在什么时候用欧氏距离?什么时候用余弦相似度?他们之间的联系与区别在哪里呢? 探索 在机器学习当中,通常以一组向量来表示样本 如上图所示,欧式距离是通过勾股定理来计算两个向量之间的距离: 余弦相似度是计算两个向量之间夹角的余弦值: 通常用1-D(x,y)来表示余弦距离。 分析: 首先谈谈区别,欧氏距离的范围是不确定的(没有经过归一化),得到的值可能很大(