Cursor&Gemini&Grok深入体验

主流大模型AI编程代码生成能力体验

今天给大家分享一下目前主流大模型的AI编程代码生成能力

🤠Trae

🐒豆包

🦁​Deepseek

🐧​Cursor

🦤​Grok

🐋​Gemini 2.5pro

来开发一个炫酷的官方网站,对比一下各自的生成效果
在这里插入图片描述

在这里插入图片描述

开始对话式编程

我要做一个科技类,人工智能方向的官网包含首页,AI机器人产品介绍,解决方案,最新资讯,关于我们几个模块,整个网站布局炫酷,科幻,加一些动画效果,整体颜色用黑色背景,金色渐变,多一些渐变色,字体,阴影等效果过度,自适应窗口,支持PC浏览器和手机浏览器。新建3个文件,分别是index.html,index.js,index.css

Trae开始生成

在这里插入图片描述

可以看到分别生成了3个文件,我们直接应用即可
在这里插入图片描述

浏览器打开index.html看下效果

在这里插入图片描述

效果很差,我们让Trae修复一下

在这里插入图片描述

修复之后的效果还是很差,距离我想要的相差十万八千里,直接放弃了
在这里插入图片描述

用deepseek生成

在这里插入图片描述

生成的效果,布局是乱的,不太满意
在这里插入图片描述

用豆包生成

在这里插入图片描述
在这里插入图片描述

生成的效果,豆包生成的效果还可以

在这里插入图片描述

用Cursor生成

在这里插入图片描述

生成效果,效果也还行
在这里插入图片描述

用Gemini2.5Pro生成

在这里插入图片描述

来看下生成效果,效果还是不错的

在这里插入图片描述
在这里插入图片描述

用Grok生成

在这里插入图片描述

来看看生成效果,马斯克的AI做的还是可以的

在这里插入图片描述
在这里插入图片描述

说下我的看法

cursor grok gemini 生成的效果还是要好很多,Trae ,deepseek,doubao的效果不太理想,需要提升,还有很长的路要走,所以做AI代码生成还是推荐cursor,下次用sonnet3.7版本试一下,效果应该会更好
在这里插入图片描述

### Gemini Robotics Gemini Robotics-ER 模型概述 Gemini Robotics 是一种“视觉-语言-行动”(Visual-Language-Action, VLA)模型,旨在赋予机器人更强的物理世界交互能力[^1]。该模型允许机器人执行流畅且反应迅速的动作,处理复杂的操作任务,并对物体类型位置的变化表现出较高的鲁棒性[^2]。 #### Gemini Robotics 的核心特点 Gemini Robotics 不仅能够感知周围环境并理解自然语言指令,还能够在多种环境中完成多样化任务。它可以通过少量演示快速学习新的短期任务,并适应不同类型的机器人硬件配置,包括双臂平台高自由度的人形机器人。这些特性使得 Gemini Robotics 成为适用于广泛场景的强大工具。 #### Gemini Robotics-ER 模型的功能扩展 Gemini Robotics-ER(Embodied Reasoning)专注于提升机器人的空间理解推理能力。这一模型增强了 Gemini Robotics 对物理世界的认知水平,使其能够更好地进行物体检测、轨迹预测以及抓取操作等高级功能。此外,Gemini Robotics-ER 提供了强大的多视角对应能力三维边界框预测技术,从而进一步提升了系统的整体性能。 --- ### Gemini Robotics 技术文档概览 虽然官方尚未公开完整的 Gemini Robotics 技术文档,但从现有资料中可以推测出以下几个重要方面: #### 数据输入与输出结构 Gemini Robotics 接收来自摄像头或其他传感器的数据作为输入源,经过内部算法处理后生成相应的动作序列或决策建议。具体来说,它的 Encoder 部分负责提取图像、语音等多种模态下的特征信息;而 Decoder 则承担起解析这些特征并将它们转化为实际可执行命令的角色[^4]。 #### 训练方法论 为了使 Gemini Robotics 更加智能化,开发团队采用了大规模预训练加上特定领域内的精调策略。这意味着即使面对从未遇到过的新型挑战情境时,系统仍然有能力给出合理解决方案。 --- ### API 使用指南假设 尽管目前关于 Gemini Robotics 官方API的具体细节尚不明确,但基于类似项目的经验我们可以做出如下猜测性的描述: ```python from gemini_robotics import RobotController # 初始化控制器实例 controller = RobotController(model="gemini", embodied_reasoning=True) # 设置目标对象及其属性参数 target_object = { 'name': 'cup', 'position': {'x': 0.5, 'y': -0.3, 'z': 0.8}, 'orientation': {'roll': 0, 'pitch': 90, 'yaw': 0} } # 发送拾取请求给机器人 response = controller.pick_and_place(target=target_object, destination={'x': 1.0, 'y': 0.0, 'z': 0.7}) if response['success']: print("Task completed successfully!") else: error_message = f"Error occurred during task execution: {response['error']}" raise Exception(error_message) ``` 上述代码片段展示了如何利用 Python SDK 来控制配备有 Gemini Robotics 或者 Gemini Robotics-ER 功能模块的自动化设备完成指定作业流程的一个简单例子。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

珍妮玛•黛金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值