二分法查找 JAVA实现

算法定义:假设数据是按升序排序的,对于给定值x,从序列的中间位置开始比较,如果当前位置值等于x,则查找成功;若x小于当前位置值,则在数列的前半段中查找;若x大于当前位置的值则在数列的后半段中继续查找,直到找到为止。

适用场景:当数据量很大时,数据有序但是不重复;

java代码如下所示(直接取用BinarySearch即可测试):

package test;
import java.util.*;
class BinarySearch{
private int[] data;
private int key;
BinarySearch(int[] data,int key){
this.data=data;
this.key=key;
}
public int startSearch(){
int result=-1;
int begin=0;
int end=data.length-1;
int mid=0;
while(begin<=end){
mid=(end-begin)/2+begin;
if(key<data[mid])
end=mid-1;
else if(key>data[mid])
begin=mid+1;
else{
result=mid;
break;
}


}
return result;
}
}
public class solution4_search {
public static void main(String[] args){
int[] nums={1,2,3,4,5,6,7,8,9};
BinarySearch b=new BinarySearch(nums,4);
System.out.println(b.startSearch());
}

}

<think>好的,用户想要了解Java二分法查找实现或教程。首先,我需要回忆一下二分法的基本概念和步骤,确保自己理解正确。二分法查找的前提是数组必须是有序的,这一点很重要,如果数组无序,需要先排序。用户提供的引用里也提到了这一点,所以应该强调有序数组的重要性。 接下来,用户可能想知道具体的实现步骤。我需要分步骤解释,从算法思路到代码实现。可能需要先讲原理,比如二分法如何通过不断缩小搜索范围来查找目标值,然后给出示例代码。同时,用户提供的引用中有Java代码示例,可以参考其中的结构,比如使用循环,计算中间索引,比较目标值与中间值,调整左右边界等。 另外,用户的问题可能涉及代码中的细节,比如防止整数溢出的处理方式。在引用[2]中,中间值计算使用了无符号右移操作符来替代(l + r)/2,这样可以避免溢出。这一点需要特别说明,因为直接相加可能导致大数溢出,而右移更安全。 用户还可能关心边界条件的处理,比如循环终止条件为什么是left <= right,以及如何调整左右边界。需要解释清楚每一步的逻辑,确保读者理解为什么这样做。 此外,可能需要提到时间复杂度,二分法的时间复杂度是O(log n),效率比线性查找高很多,但前提是数组有序。如果数组无序,排序的时间可能会影响整体效率,这时候需要权衡是否使用二分法。 最后,用户可能希望有完整的代码示例,包括main方法中的测试用例,这样他们可以直接运行并看到结果。需要确保代码的正确性,比如在引用[2]中的代码是否正确处理了各种情况,返回正确的索引或-1。 总结一下,回答的结构应该是:先介绍二分法的概念和前提条件,然后分步骤讲解实现过程,给出代码示例并解释关键点,最后讨论时间复杂度和应用场景。同时,根据用户提供的引用,需要强调有序数组的重要性,以及如何避免计算中间值时的溢出问题。可能还需要比较不同的中间值计算方法,说明为什么使用无符号右移更好。 另外,用户要求生成相关问题,我需要根据内容提出几个相关问题,比如优化方法、应用场景、处理重复元素等。这些问题应该与二分法相关,帮助用户进一步学习。 现在需要检查是否有遗漏的点,比如递归实现和迭代实现的区别,或者如何处理重复元素找到第一个或最后一个出现的位置。但根据用户的问题,可能基础教程不需要涉及这些高级内容,但可以稍微提及作为扩展。 总之,回答需要结构清晰,逐步引导用户理解二分法实现,确保代码正确,解释到位,并覆盖用户可能关心的关键点。</think>### Java 二分法查找实现教程 #### 一、算法原理 二分法查找是一种在**有序数组**中快速定位目标元素的高效算法,时间复杂度为$O(\log n)$。其核心思想是通过不断缩小搜索范围,每次排除一半的数据[^1]。 #### 二、实现步骤 1. **初始化边界**:设置左右指针`left=0`和`right=arr.length-1` 2. **循环条件**:当`left <= right`时执行循环 3. **计算中点**:`mid = (left + right) >>> 1`(无符号右移避免整数溢出) 4. **比较元素**: - 若`arr[mid] == target`,返回索引 - 若`arr[mid] > target`,调整右边界`right = mid - 1` - 若`arr[mid] < target`,调整左边界`left = mid + 1` #### 三、完整代码实现 ```java public class BinarySearch { public static int binarySearch(int[] arr, int target) { int left = 0, right = arr.length - 1; while (left <= right) { int mid = (left + right) >>> 1; // 防溢出计算 if (arr[mid] == target) { return mid; } else if (arr[mid] > target) { right = mid - 1; } else { left = mid + 1; } } return -1; } public static void main(String[] args) { int[] data = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91}; System.out.println(binarySearch(data, 23)); // 输出5 System.out.println(binarySearch(data, 100)); // 输出-1 } } ``` #### 四、关键说明 1. **有序数组要求**:输入数组必须**严格有序**,否则需要先进行排序 2. **防溢出技巧**:使用`>>>1`代替`/2`运算,可避免`(left + right)`超过`Integer.MAX_VALUE` 3. **边界调整**:每次循环至少排除一个元素,保证算法终止 4. **返回值**:找到返回索引,未找到返回-1 #### 五、扩展应用 对于重复元素场景,可通过修改判断条件实现: 1. 查找第一个匹配项:当`arr[mid] >= target`时调整右边界 2. 查找最后一个匹配项:当`arr[mid] <= target`时调整左边界
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值