1. 机器学习(不做介绍)
2. 领域分类: 监督、非监督、(半监督、强化、元、迁移)等等
3. 实时架构: 快速稳定、数据连续性、自动化
4. 实时机器学习分类:
- 硬实时机器学习:响应系统在接收到请求后,能够马上对请求进行响应反馈,做出处理。(常见领域:网页浏览、在线游戏等)。 问题:通常计算机的网络传输延迟是重要因素之一,在服务器上通常用负载均衡进行响应。
- 软实时机器学习:响应系统在接收到请求后,立即开始对响应进行处理,并且在较短的时间内进行反馈。(常见领域:物流运输等)。问题:由于对响应延迟有所放松,因此会加入分布式队列进行缓冲。
- 批实时机器学习
5. 实时机器学习要求: 可扩展性、低延迟性(10微米)、私密性。
常用工具: Pandas,Scikit-learn, Docker, RabbitMQ, Elaticsearch 以及数据库