实时机器学习系统综述与简介

本文探讨了实时机器学习的基本概念及其在不同领域的应用。详细介绍了实时架构的特点,包括硬实时、软实时及批实时机器学习的区别与应用场景,并强调了其关键技术要求如可扩展性、低延迟性和私密性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 机器学习(不做介绍)

2. 领域分类: 监督、非监督、(半监督、强化、元、迁移)等等

3. 实时架构: 快速稳定、数据连续性、自动化

4. 实时机器学习分类:

  1. 硬实时机器学习:响应系统在接收到请求后,能够马上对请求进行响应反馈,做出处理。(常见领域:网页浏览、在线游戏等)。 问题:通常计算机的网络传输延迟是重要因素之一,在服务器上通常用负载均衡进行响应。
  2. 软实时机器学习:响应系统在接收到请求后,立即开始对响应进行处理,并且在较短的时间内进行反馈。(常见领域:物流运输等)。问题:由于对响应延迟有所放松,因此会加入分布式队列进行缓冲。
  3. 批实时机器学习

5. 实时机器学习要求: 可扩展性、低延迟性(10微米)、私密性。

常用工具: Pandas,Scikit-learn, Docker, RabbitMQ, Elaticsearch 以及数据库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值