怎样通过Python和齐次坐标变换方法实现坐标系之间的转换?

本文介绍了如何使用Python和齐次坐标变换技术进行坐标系转换,详细解析了变换矩阵的构建、点的齐次表示以及转换过程。通过一个点云数据的测试案例,展示了在计算机视觉中应用这种方法进行体素可视化和点云数据的坐标变换,有助于理解坐标变换的实际操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 齐次坐标变换方法

齐次坐标变换是一种用于实现坐标系之间变换的数学技术。它通常用于计算机图形学、计算机视觉和机器人技术。在齐次坐标系中,3D点/顶点由4D向量(x,y,z,w)表示,其中w是比例因子。齐次表示允许有效的矩阵运算并简化变换过程。坐标系之间的变换可以通过使用齐次变换矩阵来实现。这些矩阵是4x4矩阵,用于编码平移、旋转、缩放和剪切操作。
要执行齐次坐标变换,通常需要执行以下步骤:

  • 定义变换矩阵:创建一个表示所需变换的4x4变换矩阵。这个矩阵可以通过组合平移、旋转、缩放和剪切矩阵来构造。
  • 齐次表示:通过添加比例因子1,将三维点/顶点坐标转换为齐次坐标。例如,3D点(x,y,z)将在齐次坐标中表示为(x,y,z,1)。
  • 矩阵乘法:将变换矩阵乘以点/顶点的齐次坐标。这可以使用矩阵乘法来完成。
  • 齐次表示转换:通过将x、y和z分量除以比例因子w,将生成的齐次坐标转换回三维坐标。

通过以下步骤,可以使用齐次坐标变换实现坐标系之间的变换。以下是一个实现案例


假设我们有一个3D点P(x,y,z),我们想使用齐次变换矩阵M将其变换到一个新的坐标系。步骤如下:

  • 定义变换矩阵:M=[[m11,m12,m13,m14],[m21,m22,m23,m24],[m31,m32,m33,m34],[m41,m42,m43,m44]
  • 齐次表示:通过添加比例因子1:P_homogeney=(x,y,z,1)将三维点P(x,y,z)转换为齐次坐标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nature子刊寺-住持

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值