poj2479动态规划+两个子串最大和,一个从左往右扫描,一个从右往左扫描时在分割点变化时,找出最大的分割点是的值ans

动态规划求最大子串和:左右扫描策略
本文介绍了如何使用动态规划方法解决寻找数组中两个子串最大和的问题。通过从左到右和从右到左两次扫描,动态维护最大连续和,并在分割点变化时找到最大值。代码实现中,利用两个数组dp分别存储左右方向的最大子串和,最终得到所求答案。
在输入的同时,进行一次DP,计算出从左到右的最大值,并把它保存在数组dp的对应的下标元素中,这样之后,对于下标为i的元素,它其中保存的便是前面所有元素可能的最大连续和。再从右到左进行一次DP,计算从右到左的最大连续和。假设此时已经算到下标为i的元素,那么将sum+dp[i-1]与ans进 行比较,将ans取较大者。最后当i到2的时候ans中的值即为所求的最大值。
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
using namespace std;
const int inf=-0x3f3f3f3f;
int main()
{
    int T=0,n=0,i=0,temp=0,sum=0,ans=0,Arr[50005]={0},dp[50005]={0};
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        temp=inf;
        sum=0;
        ans=0;
        for(i=1;i<=n;i++)
        {
            scanf("%d",&Arr[i]);
            ///从左到右求最大子串和
            sum+=Arr[i];
            if(sum>temp)
                temp=sum;
            dp[i]=temp;
            if(sum<0)
                sum=0;
        }
        ///再从右往左找右边的子串和与左边子串和的最大值
        temp=ans=inf;
        sum=0;
        for(i=n;i>1;i--)///肯定是只能到i=2;因为还要俩个子串呢
        {
            sum+=Arr[i];
            if(sum>temp)
                temp=sum;
            if(ans<dp[i-1]+temp)
                ans=dp[i-1]+temp;
            if(sum<0)
            sum=0;
        }
        printf("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值