矩阵块对角

这里写图片描述
这里写图片描述

Python

未完,sympy的通解不知怎么使用。请问是否有人了解这方面工作,谢谢。

import random
import numpy as np
import sympy

#A_1,A_2,A_3
A_1=np.array([[2,1,0,0],[1,2,0,0],[0,0,1,2],[0,0,2,1]])
A_2=np.array([[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]])
A_3=np.array([[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]])
E=np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])


#求解AX-XA=0
#等价于求解 (E@A-At@E)vec X=0
#求张量积E@A-At@E(对称的不用转置)
A_1_kron=np.kron(E,A_1)-np.kron(A_1,E)
A_2_kron=np.kron(E,A_2)-np.kron(A_2,E)
A_3_kron=np.kron(E,A_3)-np.kron(A_3,E)
#张量积矩阵化
A_matrix_1_kron = sympy.Matrix(A_1_kron)
A_matrix_2_kron = sympy.Matrix(A_2_kron)
A_matrix_3_kron = sympy.Matrix(A_3_kron)
#在列上合并张量积 变成求解AX=0的形式
A=np.vstack((A_1_kron,A_2_kron,A_3_kron))






#求解X
A_matrix = sympy.Matrix(A)
#X=sympy.symarray('x',16)


x_11,x_12,x_13,x_14=sympy.symbols('x_11,x_12,x_13,x_14')
x_21,x_22,x_23,x_24=sympy.symbols('x_21,x_22,x_23,x_24')
x_31,x_32,x_33,x_34=sympy.symbols('x_31,x_32,x_33,x_34')
x_41,x_42,x_43,x_44=sympy.symbols('x_41,x_42,x_43,x_44')

x_11=0.2057   #给x附初值
x_12=0.1525
x_13=0.3036
'''
x_11=random.random()  #给x附初值
x_12=random.random() 
x_13=random.random() 
'''

X=sympy.Matrix([x_11,x_12,x_13,x_14,x_21,x_22,x_23,x_24,x_31,x_32,x_33,x_34,x_41,x_42,x_43,x_44])
print c,y,A,X
X=sympy.solve(A_matrix*X)
print X
#结果[{x_14: 0.303600000000000, x_21: 0.152500000000000, x_32: 0.303600000000000, x_22: 0.205700000000000, x_42: 0.303600000000000, x_31: 0.303600000000000, x_34: 0.152500000000000, x_23: 0.303600000000000, x_43: 0.152500000000000, x_33: 0.205700000000000, x_41: 0.303600000000000, x_44: 0.205700000000000, x_24: 0.303600000000000}]
Z=[]
for key in X:
    print key,X[key]
    Z.append(X[key])
print Z


#求X特征向量
#X矩阵化
X=np.array([[x_11,x_12,x_13,x_14],[x_21,x_22,x_23,x_24],[x_31,x_32,x_33,x_34],[x_41,x_42,x_43,x_44]])
print X


'''
a,P=np.linalg.eig(X) ##特征值赋值给a,对应特征向量赋值给b     
print P                       ##特征向量

#求P转置
P_t=np.transpose(P) 

#最终结果
print "P*(A1)P=",P_t*A_1*P
print "P*A(2)P=",P_t*A_2*P
print "P*(A3)P=",P_t*A_3*P
'''

MATLAB

%生成A矩阵和对角阵
A_1=[2 1 0 0;1 2 0 0;0 0 1 2;0 0 2 1];
A_2=[0 0 1 0;0 0 0 1;1 0 0 0;0 1 0 0];
A_3=[0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0];
%得到矩阵A列数c_A
[r_A,c_A] = size(A_1) ;
E=eye(c_A);

%求解AX-XA=0
%等价于求解 (E@A-A'@E)vecX=0,其中@指kron积
%求张量积E@A-At@E
A_1_kron=kron(E,A_1)-kron((A_1)',E);
A_2_kron=kron(E,A_2)-kron((A_2)',E);
A_3_kron=kron(E,A_3)-kron((A_3)',E);
%按列合并
A_kron=[A_1_kron;A_2_kron;A_3_kron];
[r_A_kron,c_A_kron] = size(A_kron) ;
%求解X通解
r=rank(A_kron);
X=null(A_kron,r);
%求X特解,参数为随机数
for i=1:(c_A_kron-r)
X_e=X_e+rand*X(:,i);
end
%得到矩阵X_e列数c
[r_X,c_X] = size(X_e) ;
%将vecX整理成n*n矩阵
X=(X_e(1:c_A,1))'; %初始化X
for j=2:c_A
X=[X;(X_e(((j-1)*c_A+1):(j*c_A),1))'];
end
%求X的特征矩阵P
[P,D]=eig(X);

%A_1,A_2,A_3块对角化
dia_A_1=P'*A_1*P;
dia_A_2=P'*A_2*P;
dia_A_3=P'*A_3*P;

%输出结果
X
P
dia_A_1
dia_A_2
dia_A_3

MATLAB求通解是毫秒级的速度,Python都是读秒计,代码还复杂了不少。果然术业有专攻,下次不装逼用Python做数学问题了。

<think>好的,我现在需要回答用户关于如何在Matlab中进行矩阵对角化运算的问题。首先,我要确认用户的问题具体是什么。对角化通常指的是将多个子矩阵沿对角线排列,组合成一个大的对角矩阵。Matlab中可能有相关的函数或操作可以实现这一点。 我记得Matlab中有一个函数叫做blkdiag,可能用于创建对角矩阵。但我不太确定它的具体用法,需要验证一下。比如,假设用户有几个子矩阵A、B、C,他们想把这些矩阵放在对角线上,形成一个大的矩阵,其余部分用零填充。这时候使用blkdiag(A,B,C)应该可以得到结果。 接下来,我需要考虑如何详细说明这个过程。可能需要给出一个具体的例子,比如创建两个较小的矩阵,然后演示如何使用blkdiag将它们组合成对角矩阵。同时,用户可能还需要了解如果没有这个函数的话,如何手动实现,比如通过循环或者矩阵拼接的方式。 另外,用户可能希望了解对角化的应用场景,比如在控制系统、信号处理或量子力学中的使用,这时候需要举一些例子说明。同时,可能还需要提到相关的数学概念,比如矩阵的直和,或者如何将多个系统模型组合成一个整体模型。 需要注意的是,引用用户提供的参考资料中的内容。比如,引用中提到了矩阵的转置、求逆、特征值等,虽然对角化不直接涉及这些,但可能在应用过程中会结合这些运算。例如,对角矩阵的逆矩阵也是各个子矩阵对角组合,这可能是一个相关的知识点,可以提及并引用提供的资料。 还需要检查是否有其他方法可以实现对角化,例如使用kron函数或者通过索引赋值的方式构建矩阵。比如,先创建一个全零的大矩阵,然后将子矩阵逐个放入对应的位置。这可能对于理解对角化的底层操作有帮助,特别是当用户需要自定义某些步骤时。 然后,要确保回答结构清晰,分步骤说明,可能包括使用blkdiag函数的基本方法,手动实现的方法,以及示例代码。同时,生成相关问题需要考虑用户可能进一步想知道的内容,比如性能比较、应用实例或者如何分解对角矩阵等。 最后,检查LaTeX格式是否正确,所有的数学表达式和矩阵需要用$...$或$$...$$包裹,确保代码示例正确,并正确添加引用标识。例如,在提到矩阵运算时引用提供的资料中的相关内容。</think>在Matlab中进行矩阵块对角化运算,可使用内置函数`blkdiag`将多个子矩阵沿对角线组合为对角矩阵。以下是具体方法和示例: --- ### **方法一:使用`blkdiag`函数** **语法**: ```matlab C = blkdiag(A, B, C, ...) ``` **步骤**: 1. 定义子矩阵$A, B, C$等。 2. 调用`blkdiag`函数,按顺序输入子矩阵。 3. 输出结果为对角矩阵$C$,形式为: $$ C = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \\ \end{pmatrix} $$ **示例**: ```matlab A = [1 2; 3 4]; % 2x2矩阵 B = [5 6 7; 8 9 10]; % 2x3矩阵 C = blkdiag(A, B); % 组合为对角矩阵 disp(C); ``` 输出结果: ``` 1 2 0 0 0 3 4 0 0 0 0 0 5 6 7 0 0 8 9 10 ``` --- ### **方法二:手动拼接实现** 若需自定义位置,可通过索引赋值操作: ```matlab % 定义子矩阵 A = ones(2); B = magic(3); % 计算总维度 rows = size(A,1) + size(B,1); cols = size(A,2) + size(B,2); % 初始化零矩阵 C = zeros(rows, cols); % 填充子矩阵 C(1:size(A,1), 1:size(A,2)) = A; C(size(A,1)+1:end, size(A,2)+1:end) = B; disp(C); ``` --- ### **应用场景** 对角化常用于: 1. **控制系统**:组合多个子系统模型为整体状态空间模型[^1]。 2. **信号处理**:分离不同频段的信号分量。 3. **量子力学**:表示多粒子系统的哈密顿量。 --- ### **数学性质** 对角矩阵的运算(如求逆、特征值)可分解为各子矩阵独立运算: - **逆矩阵**:若$A, B$可逆,则对角矩阵的逆为: $$ \begin{pmatrix} A^{-1} & 0 \\ 0 & B^{-1} \\ \end{pmatrix} $$ - **特征值**:整体矩阵特征值为各子矩阵特征值的并集。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值