嵌套矩形

这篇博客探讨了如何解决矩形嵌套问题,通过排序和记忆化搜索技术来寻找矩形间的最短路径。文章以http://acm.nyist.net/JudgeOnline/problem.php?pid=16为例进行阐述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



http://acm.nyist.net/JudgeOnline/problem.php?pid=16


矩形嵌套

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5


用sort经行排序,排完后经行判断,


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct k{
	int a,b;
}aa[2009];
int cmp(k i,k j)
{
	if(i.a==j.a)
		return i.b<j.b;
	else
		return i.a<j.a;
}
int n,x,y,dp[2009];
int main()
{
	int N;
	cin>>N;
	while(N--)
	{
		int n;
		cin>>n;
		for(int i=0;i<n;i++)
		{
			cin>>x>>y;
			aa[i].a=min(x,y);
			aa[i].b=max(x,y);
		}
		sort(aa,aa+n,cmp);
		/*for(int i=0;i<n;i++)
			cout<<aa[i].a<<" "<<aa[i].b<<endl;*/
		dp[0]=1;
		for(int i=1;i<n;i++)
		{
			int ans=0;
			for(int j=0;j<i;j++)
				if(aa[i].a!=aa[j].a&&aa[i].b>aa[j].b&&dp[j]>ans)
				{
					ans=dp[j];
				}
			dp[i]=ans+1;
			//cout<<dp[i]
		}int maxx=0;
		for(int i=0;i<n;i++)
			if(maxx<dp[i])
			{
				maxx=dp[i];
			}
			cout<<maxx<<endl;
	}
}
		


用记忆化搜索,找最短路径。

ans

#include<iostream>
#include<cstring>
using namespace std;
int d[1000] = {0};
int G[1000][1000];int n;
int dp(int i)
{
	int& ans = d[i];
	if(ans > 0)
	{
		return ans;
	}
	ans = 1;  // ???ans是减少书写,代替的d[i];
	for(int j = 0; j <n; j++)
	{
		if(G[i][j])
		{
			d[i] = max(ans, dp(j) + 1);//全部都进行搜索,找到以i结尾的最长路径
		}
	}
	return ans;
}
int main()
{
	int x[1000],y[1000];
	int N;
	cin>>N;
	while(N--)
	{
		memset(G,0,sizeof(G));
		memset(d,0,sizeof(d));//记得清零
		cin>>n;
		for(int i=0;i<n;i++)
				cin>>x[i]>>y[i];
			//cout<<1;
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++)
			{
				//cout<<1;
				if((x[i]>x[j]&&y[i]>y[j])||(x[i]>y[j]&&y[i]>x[j]))
				{
					G[i][j]=1;//如果i到j能走到,则标记1;
					//cout<<i<<" "<<j<<"  a";
				}
			}
			int maxx=0,temp;
		for(int i=0;i<n;i++)
		{
			temp=dp(i);
			//cout<<d[i]<<" ";
			if(maxx<temp)
				maxx=temp;
		}
		cout<<maxx<<endl;
	}
		
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值