无聊的数学定义
在m×mm \times mm×m的矩阵AAA中, 任取kkk行与kkk列, 位于这些行列交叉处的k2k^{2}k2个元素, 不改变它们在矩阵中所处的位置次序而得的kkk阶行列式, 称为矩阵AAA的kkk阶子式.
设在矩阵AAA中有一个不等于0的r阶子式DDD, 且所有r+1r+1r+1阶子式(如果存在的话)全等于0, 那么DDD称为矩阵AAA的最高阶非零子式, 数r称为矩阵AAA的秩, 记作: R(A)R(A)R(A)
- 零矩阵的秩为0;
- R(A)=R(AT)R(A) = R(A^{T})R(A)=R(AT);
- 可逆矩阵称为满秩矩阵;
- 不可逆矩阵称为降秩矩阵.
通俗定义
矩阵AAA的纵列向量组的极大无关组.
- 对于n阶方阵
R(A)=Rc(A)=Rr(A)Rc是列秩Rr是行秩 R(A) = R_{c}(A) = R_{r}(A) \\ \qquad \qquad R_{c}是列秩 \\ \qquad \qquad R_{r}是行秩 R(A)=Rc(A)=Rr(A)Rc是列秩Rr是行秩
- 对于m×nm\times nm×n矩阵
R(A)=min{Rc(A),Rr(A)} R(A) = min\{ R_{c}(A), R_{r}(A) \} R(A)=min{Rc(A),Rr(A)}
几何定义
一个线性变换(矩阵)的秩, 就是变换后, 还能保持一个非零体积的几何形状的最大的维度.