matlab 矩阵基础运算

本文介绍了MATLAB中矩阵的一些基础运算,包括求行列式、对角元素之和、正交空间、简化梯形形式、范数计算、秩、左除、右除、化零矩阵等。还涉及到Cholesky分解、LU分解、奇异值分解以及坐标转换。同时展示了如何求解线性方程组和计算向量间距离、夹角以及特征值问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

%基础运算,A为矩阵,B为向量

det(A)%求矩阵A行列式的值

trace(A)%求A对角元素之和

orth(A)%A的正交空间,矩阵A的正交空间Q满足QTQ=I,且矩阵Q与A具有相同的列基底,Matlab中用函数orth()来计算正交空间Q

rref(A)%A的简化梯形形式

norm(B)或者norm(B,2)%求B的2阶范数

norm(B,1)%求B的1阶范数

norm(B,inf)%求B的无穷阶范数

rank(A)%求A的秩,矩阵中线性无关的列(行)向量个数,称为列(行)秩

X=A\B%左除,用来解AX=B,若B=0,且rank(A)小于A的行数,那么该齐次方程组有非零解

X=A/B%右除,用来解XA=B

null(A)%求A的化零矩阵,对于非满秩矩阵A,若存在矩阵Z使得AZ=0且ZZ=I,则称 矩阵Z为矩阵A的化零矩阵

A(:,2)%矩阵A的第二列全部元素

A(1:2,2)%矩阵A的第二列的前两行元素

%假设A为m行n列

A(n*k+l)可以访问A的第k+1列l行元素

矩阵,数组下标均是从0开始,这一点与python和C不一样

A=pascal(4)
R=chol(A)
RTR%Cholesky分解是把对称正定矩阵表示成上三角矩阵的转置与其本身的乘积,即:A=RTR,在Matlab中用函数chol来计算Cholesky分解
[L1,U1]=LU(A)
L1*U1%LU分解是将任意一个方正A分解成为一个交换下三角矩阵L和一个上三角矩阵U的乘积,A=LU,在Matlab中用函数lu来计算LU分解

[U,S,V]=SVD(A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值