原本想着安装软件可简单了。一搜索有那么多的经验,那更是分分钟搞定,真是太天真。
我自己的电脑的cuda是9.0.该代码安装要求太多了,加上我习惯了docker。(我的docker参见https://blog.csdn.net/u013985291/article/details/81110837)
所以考虑的方式:直接下载别人的镜像。(cuda8)
————————————————————————————————————————————————
在这个环境下,不用sudo也可以成功。
0使用英伟达的docker cuda 8.0,安装cudnn5.1
nvidia-docker run -it -v /home/XXXX/xxxx/data:/data -v /home/XXXX/xxxx/config:/config nvidia/cuda:8.0-devel-ubuntu16.04 bash
https://www.cnblogs.com/go-better/p/7625541.html
1重新手动编译theano,参考https://blog.csdn.net/xdzhangzhenhao/article/details/79058963,https://blog.csdn.net/qq_36355662/article/details/80113550
pip按下面顺序安装了以下软件:
nose (1.3.7)、nose-parameterized (0.6.0)、pytest (2.9.2)-》numpy (1.12.0)(终端运行python -c "import numpy;numpy.test()"看看是不是OK )=》scipy (0.17.0)(终端运行python -c "import scipy;scipy.test()"看看是不是OK)--》flufl、Lasagne 、Theano (0.9.0rc1)--》parse (1.11.1)、h5py (2.9.0)
2 vim ~/.theanorc
(CPU的文件内容如https://blog.csdn.net/qq_36355662/article/details/80113550,测试在终端运行python -c "import theano;theano.test()";
GPU的文件内容https://blog.csdn.net/qq_36355662/article/details/80114260,测试见https://blog.csdn.net/Hansry/article/details/807147