1、问题描述
利用深度神经网络进行特征的提取和分类取得了很好的效果。在很多视觉会议的竞赛上,CNN(卷积神经网络)的方法效果都不错。一些“基准”的数据集例如:Caltech-101(Fei-Fei et al., 2004),办公室内区域数据集(Saenko et al., 2010)Caltech-UCSD鸟类纹理识别数据集(Wnlinder et al., 2010)以及SUN-397场景识别数据集(Xiao et al., 2010)。在此之前,可以利用传统的特征提取法以及分类方法例如人工神经网络法或者SIFT特征等方法对上述数据集进行分别训练,然后识别。那么问题来了,在有限的数据集上,有监督的深度神经网络结构很容易造成过拟合(Krizhevsky et al., 2012),这应该怎么解决?
本文研究的是,在大规模数据集上进行有监督的训练,提取出来的特征直接应用到其他的分类任务当中。就比如,在ImageNet数据集上训练CNN,得到了一个有参数的神经网络结