DeCAF: A Deep Convolutional Activation Featurefor Generic Visual Recognition阅读报告(1)

该博客探讨了使用深度神经网络,尤其是CNN,进行特征提取和分类在视觉识别任务中的优势。通过在大规模数据集如ImageNet上预训练CNN,然后将其作为其他数据集的特征提取器,研究发现这种方法在Caltech-101、Office区域适应数据集等上表现优于直接在这些数据集上训练的模型。此外,博客介绍了CAFFE(现称为DeCAF)这一深度学习工具,用于训练和提取特征,并提供了预训练模型以供研究者使用。

1、问题描述

利用深度神经网络进行特征的提取和分类取得了很好的效果。在很多视觉会议的竞赛上,CNN(卷积神经网络)的方法效果都不错。一些“基准”的数据集例如:Caltech-101(Fei-Fei et al., 2004),办公室内区域数据集(Saenko et al., 2010)Caltech-UCSD鸟类纹理识别数据集(Wnlinder et al., 2010)以及SUN-397场景识别数据集(Xiao et al., 2010)。在此之前,可以利用传统的特征提取法以及分类方法例如人工神经网络法或者SIFT特征等方法对上述数据集进行分别训练,然后识别。那么问题来了,在有限的数据集上,有监督的深度神经网络结构很容易造成过拟合(Krizhevsky et al., 2012),这应该怎么解决?

本文研究的是,在大规模数据集上进行有监督的训练,提取出来的特征直接应用到其他的分类任务当中。就比如,在ImageNet数据集上训练CNN,得到了一个有参数的神经网络结

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值