动态规划数字三角形模型
定义
动态规划数字三角形模型是在一个三角形的数阵中,通过一定规则找到从顶部到底部的最优路径或最优值。
运用情况
通常用于解决具有递推关系、需要在不同路径中做出选择以达到最优结果的问题。比如计算最短路径、最大和等
注意事项
- 正确定义状态表示,确保能涵盖所有可能情况且无冗余。
- 注意边界条件的处理。
- 确保递推关系的正确性和完整性。
解题思路
- 确定状态:一般是用一个二维数组来表示在某个位置时的最优值。
- 建立递推关系:根据问题的具体要求,找到从上层到下层每个位置的最优值与之前位置的关系。
- 从顶部开始逐步计算,根据递推关系更新状态,最终得到底部的最优解。
例如,在一个数字三角形中,要求从顶部到底部路径上数字之和最大。则状态可以定义为 dp[i][j]表示到达第 i 行第 j 列位置时的最大和,递推关系可能是 dp[i][j] = max(dp[i-1][j-1], dp[i-1][j]) + triangle[i][j]。通过从顶部向下依次计算状态,最终得到底部的最大和。