pandas DataFrame的分类汇总

此篇博客展示了如何使用pandas DataFrame对数据进行分组,按'E'列的国家标签进行聚合,计算各组的总和。通过实例演示了如何利用Python进行数据处理,并关注了不同国家的数据分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
                   'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                    'C' : np.random.randn(8),
                    'D' : np.random.randn(8),
                  'E':['China','Japan','Russia','Russia','Japan','China','China','Japan'],
                   'F':np.random.randn(8)})

# df.to_excel()

print(df)

grouped = df.groupby('E')# 可以加一个as_index=False, 看看有什么不一样
print(grouped.aggregate(np.sum))

数据框(dataframe)是Pandas库中最重要的数据结构之一,也是数据分析工作中最常用的数据结构之一。数据框可以看作是由多个Series对象组成的二维表格,其中每一列都是一个Series对象。数据框可以存储各种类型的数据,包括整数、浮点数、字符串、日期等。下面是对数据框的一些分类汇总。 1. 按照行列索引方式分类 按照行列索引方式分类,数据框可以分为两类:有序数据框和无序数据框。有序数据框是指行列索引都有特定的顺序,无序数据框是指行列索引没有特定的顺序。 2. 按照数据类型分类 按照数据类型分类,数据框可以分为数值型数据框和非数值型数据框。数值型数据框包括整型数据框和浮点型数据框,非数值型数据框包括字符型数据框和日期型数据框。 3. 按照数据来源分类 按照数据来源分类,数据框可以分为内存数据框和外部数据框。内存数据框是指数据存储在内存中,可以通过Python代码生成,外部数据框是指数据存储在外部文件中,可以通过Pandas库提供的读取函数读取到内存中。 4. 按照数据处理方式分类 按照数据处理方式分类,数据框可以分为静态数据框和动态数据框。静态数据框是指数据框中的数据不会随时间变化而变化,动态数据框是指数据框中的数据会随时间变化而变化。动态数据框常用于时间序列数据的处理。 5. 按照数据结构分类 按照数据结构分类,数据框可以分为普通数据框和层次化数据框。普通数据框是指数据框中只有一层行列索引,层次化数据框是指数据框中有多层行列索引。层次化数据框可以更好地处理多维数据。 以上是数据框的一些分类汇总,不同的数据框有不同的特点和应用场景,根据实际需求选择适合的数据框进行数据处理和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值