
量化交易
文章平均质量分 78
量化交易
ZFJ_张福杰
一个有产品思想的程序猿...
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【量化】策略交易之随机指标策略(Stochastic)
随机指标策略摘要 随机指标(Stochastic Oscillator)通过计算当前收盘价在N日高低区间内的相对位置(%K)及其平滑值(%D),判断超买(>80)超卖(<20)状态。该策略在震荡行情中表现良好,能灵敏捕捉短线机会,但趋势行情中易产生假信号。Python实现示例显示:以DOGE/USDT为标的的1小时K线策略,通过14日周期计算KD值,当%K下穿20买入、上穿80卖出。回测结果显示策略收益率波动较大,需配合趋势过滤优化信号质量。关键优势在于操作简单直观,但需注意其滞后性和趋势适应性原创 2025-06-28 22:32:05 · 794 阅读 · 0 评论 -
【量化】策略交易之相对强弱指数策略(RSI)
本文介绍了基于相对强弱指数(RSI)的量化交易策略。RSI通过计算14周期内收盘价涨跌幅度的平均值(公式:RSI = 100 - 100/(1+RS)),当RSI<30时视为超卖买入信号,RSI>70时视为超卖卖出信号。通过Python实现Binance平台DOGE/USDT交易对回测,代码包含数据获取、RSI计算、交易信号生成及收益可视化功能。回测结果显示策略产生多轮买卖信号,最终累计收益为负值(初始1000USDT降至960.44USDT),表明该基础策略需进一步优化参数或结合其他指标使用。原创 2025-06-20 20:44:53 · 548 阅读 · 0 评论 -
【量化】策略交易之动量策略(Momentum)
动量策略是一种基于"强者恒强"理念的交易方法,通过追踪资产过去表现来预测未来走势。本文以DOGE/USDT为例,展示了该策略的Python实现:1) 计算过去10根K线收益率作为动量指标;2) 正收益时买入,负收益时卖出;3) 记录交易盈亏并绘制收益曲线。代码包含完整的交易信号生成、持仓管理和绩效评估功能。测试结果显示策略能有效捕捉趋势,但需注意动量策略在震荡行情中可能表现不佳。该实现可直接应用于其他加密货币交易对,为量化交易者提供了一个可扩展的框架。原创 2025-06-14 23:04:12 · 777 阅读 · 0 评论 -
【量化】策略交易类型
后期我会针对这些策略类型进行一步一步学习。原创 2025-06-08 20:27:27 · 375 阅读 · 0 评论 -
【量化】策略交易 - 均线策略(Moving Average Strategy)- 代码增强版本
本文主要是针对中的代码事例,进行逻辑的增强,添加了逻辑,并记录了。原创 2025-06-08 20:14:01 · 387 阅读 · 0 评论 -
【量化】策略交易 - 均线策略(Moving Average Strategy)
均线策略是趋势交易的入门方法,虽然简单,但理解透彻后能衍生出更复杂的量化系统。原创 2025-06-08 19:51:11 · 1142 阅读 · 0 评论 -
【量化】量化策略交易
博主目前在学习量化策略交易,目前记录自己的学习笔记。量化策略交易(Quantitative Strategy Trading)是一种以数学模型、统计分析和计算机程序为基础,系统性地执行交易策略的方法。它强调客观、可验证、自动化,区别于传统的“主观交易”。量化策略交易,是通过量化模型(Quantitative Model)来决定交易时机、仓位大小、买卖标的等,用计算机程序代替人进行判断与执行的交易方式。数据分析(历史行情、因子)逻辑建模(规则设定)策略回测(模拟历史表现)原创 2025-06-06 14:21:05 · 530 阅读 · 0 评论