
机器学习
只想安静的一个人
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习基础介绍
概念 机器学习指的是机器通过统计学算法,对大量的历史数据进行学习从而生成经验模型,利用经验模型指导业务。 应用 营销类场景:上平推荐、用户群体画像,广告精准投放 金融类场景: 贷款发放预测、金融风险控制、股票走势预测、黄金价格预测 SNS关系挖掘: 微博粉丝领袖分析、社交关系链分析 文本类场景: 新闻分类、关键词提取、文章摘要、文本内容分析 非结构化数据处理场景:图片分类、图片文本内容...原创 2018-07-09 13:06:16 · 295 阅读 · 0 评论 -
机器学习——聚类
概念 对于没有标签的数据,我们首先能做的,就是寻找具有相同特征的数据,将他们分配到相同的组。 K-means(k均值) 概念 K均值算法试图将给定的数据分割为K个不相交的组或者簇,每个簇的指标就是该组所有成员的均值。 算法拆解 对于未分类的样本,首先随机以K个元素作为其实质心。 计算每个样本跟质心之间的距离,并将该样本分配个理他最近的质心所属的簇,重新计算分配好后的质心 在质...原创 2018-07-10 14:23:19 · 323 阅读 · 0 评论 -
机器学习——线性回归
概念 对于监督学习,给出一个方程的确切数字,比如在物理学领域,我们需要根据温度和湿度的历史数据,来预测未来的湿度和温度,我们把这类要得到确切数值的问题成为回归分析。 损失函数 线性回归首先需要选择一个误差函数(损失函数cost function)还函数的值,表征模型对于问题的合适程度。 实例 __author__ = 'ding' ''' 线性回归 单变量线性回归 ''' im...原创 2018-07-12 16:28:07 · 169 阅读 · 0 评论 -
机器学习--数据判断依据 精确度、召回率、调和平均值F1值
精准度(precision) precision = 正确预测的个数(TP) / 被预测正确的个数(TP+FP) 召回率(recall) recall = 正确预测的个数(TP)/ 预测个数(FN) 调和平均值 F1-Socre f1 = 2*精度 * 召回率 /(精度 * 召回率) 以二分类问题为例 真实\预测 0 1 0 预测negative正确(TN) 预测positive错...原创 2018-11-27 22:12:48 · 5364 阅读 · 1 评论 -
激活函数介绍
ReLU对比Sigmoid主要变化: 1.单侧抑制 2.相对宽阔的兴奋边界 3.稀疏激活性 (1) sigmoid函数(曲线很像“S”型) 公式: 曲线: 也叫 Logistic 函数,用于隐层神经元输出 取值范围为(0,1) 它可以将一个实数映射到(0,1)的区间,可以用来做二分类。(它不像SVM直接给出一个分类的结果,Logistic Regression给出的是这个样本属于正类或者负类的...原创 2018-10-15 16:40:23 · 382 阅读 · 0 评论