机器学习中的偏差、方差、过拟合

本文探讨了机器学习中偏差与方差的概念,解释了它们如何影响模型性能。高偏差表示欠拟合,可通过增大模型复杂度解决;高方差则表示过拟合,可以通过增加数据集大小或应用正则化来缓解。过拟合表现为模型在训练集上表现好但测试集上差,解决方案包括正则化、dropout等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、机器学习的偏差与方差的理解

1. 方差大:训练集的误差小,验证集误差大,对应模型过拟合

2. 偏差大:如果训练集和验证集的误差接近,且都偏大,说明模型效果差,欠拟合

3. 偏差小、方差小:训练集和验证集误差差不多,都比较小,说明模型效果好

 

偏差与方差对应的解决方法:

1. 高偏差(无法拟合训练数据):换一个更大的模型或网络,模型训练久一点

2. 高方差(过拟合):增大数据集,正则化

 

理解模型的偏差和方差,可以判断模型的表现,进而采取相应的措施,达到更好的效果。

 

二、过拟合与解决办法

 

1. 过拟合

过拟合的直观表现是算法在训练集上表现好,但在测试集上表现不好,泛化性能差。过拟合是在模型参数拟合过程中由于训练数据包含抽样误差,在训练时复杂的模型将抽样误差也进行了拟合导致的。所谓抽样误差,是指抽样得到的样本集和整体数据集之间的偏差。直观来看,引起过拟合的可能原因有:

(1)模型本身过于复杂,以至于拟合了训练样本集中的噪声。此时需要选用更简单的模型,或者对模型进行裁剪。

(2)训练样本太少或者缺乏代表性。此时需要增加样本数,或者增加样本的多样性。

(3)训练样本噪声的干扰,导致模型拟合了这些噪声,这时需要剔除噪声数据或者改用对噪声不敏感的模型。

 

2. 过拟合的解决方法

2.1 正则化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值