leecode 514. 自由之路

题目描述

电子游戏“辐射4”中,任务 “通向自由” 要求玩家到达名为 “Freedom Trail Ring” 的金属表盘,并使用表盘拼写特定关键词才能开门。

给定一个字符串 ring ,表示刻在外环上的编码;给定另一个字符串 key ,表示需要拼写的关键词。您需要算出能够拼写关键词中所有字符的最少步数。

最初,ring 的第一个字符与 12:00 方向对齐。您需要顺时针或逆时针旋转 ring 以使 key 的一个字符在 12:00 方向对齐,然后按下中心按钮,以此逐个拼写完 key 中的所有字符。

旋转 ring 拼出 key 字符 key[i] 的阶段中:

您可以将 ring 顺时针或逆时针旋转 一个位置 ,计为1步。旋转的最终目的是将字符串 ring 的一个字符与 12:00 方向对齐,并且这个字符必须等于字符 key[i] 。
如果字符 key[i] 已经对齐到12:00方向,您需要按下中心按钮进行拼写,这也将算作 1 步。按完之后,您可以开始拼写 key 的下一个字符(下一阶段), 直至完成所有拼写。
 

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/freedom-trail
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题目分析

解题思路
1.这道题考察的是全局最优解,如果使用dfs可能会陷入局部最优解,并且增加时间复杂度
 

class Solution {
    public int findRotateSteps(String ring, String key) {
 
        char[] ringChar = ring.toCharArray();
        char[] keyChar = key.toCharArray();

        //记忆搜索数组,通过记录数组中每个字母在位置,方便计算距离
        ArrayList<Integer>[] lists = new ArrayList[26];

        for (int i = 0; i < 26; i++) {
            lists[i] = new ArrayList<>();
        }

        // 遍历ring,存储每个字符出现的位置,即下标
        int n = ringChar.length, m = keyChar.length;

        for (int i = 0; i < n; i++) {
            char c = ringChar[i];
            // 找到对应的arraylist,存储下标
            lists[c - 'a'].add(i);
        }

        // ring 和 key的长度最多100,所以定个150很安全
        int[][] dp = new int[m][150];

        // dp[0][j] 只需要计算从12点方向到key[0]所需要走的最短距离
        for (int j = 0; j < lists[keyChar[0] - 'a'].size(); j++) {
            // 每一个key[0]字符所在的下标
            int x = lists[keyChar[0] - 'a'].get(j);
            // 第一个12点方向的字符的下标,其实就是0
            int y = lists[ringChar[0] - 'a'].get(0);
            // 顺时针旋转或者逆时针旋转
            dp[0][j] = Math.min(Math.abs(x - y), n - Math.abs(x - y)) + 1;
        }

        for (int i = 1; i < keyChar.length; i++) {
            // 列出当前的字符,和上一个的字符分别是什么
            char cur = keyChar[i], pre = keyChar[i - 1];
            for (int j = 0; j < lists[cur - 'a'].size(); j++) {
                // 当前字符cur出现在ring圆盘上每一个位置的下标
                int x = lists[cur - 'a'].get(j);
                int minSteps = Integer.MAX_VALUE;
                for (int k = 0; k < lists[pre - 'a'].size(); k++) {

                    // 上一个字符pre出现在ring圆盘上每一个位置的下标
                    int y = lists[pre - 'a'].get(k);

                    int steps = dp[i - 1][k] + Math.min(Math.abs(x - y), n - Math.abs(x - y)) + 1;

                    minSteps = Math.min(minSteps, steps);
                }

                //这一步很关键,dfs的问题需要无法兼容全局最优解,通过df[i][j]的值,可以累计算出全局最优解
                dp[i][j] = minSteps;
            }
        }

        // dp[keyChar.length - 1][0], .... dp[keyChar.length - 1][k] 中的最小值,就是最终拼接key所需要的最少步数

        int ans = Integer.MAX_VALUE;
        for (int k = 0; k < 150; k++) {
            //当等于0时,说明已经越界了,直接跳出循环
            //按照题目描述ring中的字符已经包含key的所有字符,即key是ring的子集,也是说key一定你能从ring推导而出,如果为空说明k已经超出ring的范围
            if (dp[keyChar.length - 1][k] == 0) break;
            ans = Math.min(ans, dp[keyChar.length - 1][k]);
        }

        return ans;

    }
}

作者:anonymous-39
链接:https://leetcode.cn/problems/freedom-trail/solution/viktorxhzj-dai-ma-xiang-jie-bu-chong-don-2cw1/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
### 解题思路 LeetCode 514 题目描述的是一个关于“自由之路”(Freedom Trail)的问题,其中需要通过旋转环形字符串 ring 来拼写 key 中的每一个字符,并计算最小的步数。这个问题可以通过动态规划(Dynamic Programming, DP)的方法来解决。 #### 动态规划分析 题目要求找出从 ring 到 key 的最小操作步数。每一步可以顺时针或逆时针旋转 ring 一次,每次旋转一个字符位置;同时,拼写当前字符需要按下按钮一次。为了求解最小步数,我们需要考虑以下几点: - **状态表示**:定义 `dp[i][j]` 表示拼写到 key 的第 i 个字符时,ring 指针指向 ring 的第 j 个字符所需的最小步数。 - **状态转移**:对于每个 key 的字符,找到所有可能匹配 ring 中的字符的位置,并计算从上一个状态转移到当前位置的最小步数。 - **初始条件**:当 key 是空字符串时,所需步数为 0;当 key 的第一个字符在 ring 中出现多次时,需要遍历所有可能的起始点并记录最小值。 #### 实现细节 1. **预处理 ring 字符的位置**: - 使用字典存储 ring 中每个字符的所有索引位置,例如 `pos['a'] = [0, 3, 5]`。 2. **初始化动态规划数组**: - 第一层循环遍历 key 的每个字符,第二层循环遍历 ring 中对应字符的所有位置。 - 对于每个字符,计算从上一个字符的各个可能位置转移到当前位置所需的步数。 3. **更新 dp 数组**: - 在每次状态转移时,取所有可能路径中的最小值作为当前状态的最优解。 ### Python 实现代码 ```python def findRotateSteps(ring: str, key: str) -> int: from collections import defaultdict # 获取 ring 字符串中每个字符的所有位置 pos_map = defaultdict(list) for idx, ch in enumerate(ring): pos_map[ch].append(idx) # 定义动态规划表,dp[i][j] 表示拼写 key 前 i 个字符,且指针在 ring[j] 的最小步数 n = len(ring) m = len(key) # 初始化 dp 表 dp = [[float('inf')] * n for _ in range(m)] # 处理第一个字符的情况 for j in pos_map[key[0]]: dp[0][j] = min(j, n - j) # 计算从起点到 j 的最小旋转步数 # 逐个处理 key 的剩余字符 for i in range(1, m): current_char = key[i] for j in pos_map[current_char]: # 遍历前一个字符的所有可能位置 k for k in pos_map[key[i - 1]]: # 计算从 k 到 j 的最小旋转步数 rotate_steps = min(abs(j - k), n - abs(j - k)) dp[i][j] = min(dp[i][j], dp[i - 1][k] + rotate_steps) # 最终结果是拼写完 key 所有字符后,加上每个字符按下按钮的总步数 result = min(dp[m - 1]) + m return result ``` ### 示例运行 输入: ```python ring = "godding" key = "gd" ``` 输出: ```python 4 ``` ### 解释 - 对于 key 的第一个字符 `'g'`,由于它已经在正确的位置,只需要 1 步来拼写这个字符。 - 对于 key 的第二个字符 `'d'`,需要逆时针旋转 ring `"godding"` 2 步使它变成 `"ddinggo"`,再加上拼写这一步,总共 3 步。 - 最终输出是 4[^3]。 ### 时间复杂度与空间复杂度 - **时间复杂度**:O(m * n^2),其中 m 是 key 的长度,n 是 ring 的长度。因为对于每个 key 的字符和每个 ring 的字符,都需要遍历所有可能的前一个字符位置。 - **空间复杂度**:O(m * n),用于存储动态规划表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值