
机器学习
旋转小马
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
应用时间序列--前序
时间序列分析,正是根据客观事物发展的连续规律性,运用过去的历史数据,通过统计分析,进一步推测未来的发展趋势。根据观察时间的不同,时间序列中的时间可以是年份、季度、月份或其他任何时间形式。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型。(1)、趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不相等。1、时间序列分析法是根据过去的变化趋势预测未来的发展,它的前提是假定事物的过去延续到未来。原创 2022-10-24 23:44:42 · 762 阅读 · 0 评论 -
一元线性回归-最小二乘法推导过程
设一元线性回归方程为,数据样本点为, 要想使这n个样本点落在一元线性回归方程附近,不妨设误差为,使得没一个样本点落在一元线性回归方程上,因此有恒成立,所以回归直线应满足的条件是:实际值与回归估计值之间的误差平方和最小,即: 此时令,原问题就转换成求解二元函数极小值问题,分别对求偏导: 令上两式等于零,即 最终求出两个数值,一元线性回归方程也就拟合出来了。 ...原创 2021-11-07 18:54:33 · 5542 阅读 · 0 评论 -
python实现一元线性回归详细步骤
#建模、预测和可视化 # 导入相关包 import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # 切分训练集和测试集的函数 import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.sans-serif'] = ['Sim原创 2021-10-29 00:32:40 · 6006 阅读 · 2 评论