
low-light
文章平均质量分 94
Phoenixtree_DongZhao
深度学习 图像处理 空间物理
github:https://github.com/phoenixtreesky7
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
新的轻量级模型 LSNet: 见大聚小(See Large, Focus Small) CVPR 2025
具体而言,将x_i的第c个通道记为x_ic(属于第g组),通过N_{K_S}(x_ic)与w^∗_ig∈R^{K_S×K_S}的卷积运算获得其聚合特征表示y_ic。LS卷积的计算主要包含三部分:P_ls中的逐点卷积、P_ls中K_L×K_L的深度卷积,以及A_ls中K_S×K_S的卷积聚合。(N_{K_L}(x_i)表示以x_i为中心的K_L×K_L邻域)。{K_S}(x_i)**(表示以x_i为中心的K_S×K_S邻域)。,其上下文区域是以x_i为中心的K×K邻域,记为N_K(x_i)。原创 2025-04-04 05:33:38 · 2910 阅读 · 0 评论 -
摩托罗拉、联想新作:MobileMEF 快速有效的多曝光融合方法
https://arxiv.org/pdf/2408.07932GitHubLucas Nedel Kirsten, Zhicheng Fu, Nikhil Ambha MadhusudhanaRecent advances in camera design and imaging technology have enabled the capture of high-quality images using smartphones. However, due to the limited dynamic原创 2024-08-20 13:10:24 · 956 阅读 · 0 评论 -
重新定义弱光增强的质量、效率和价值的峰值点,CVPR2022 Oral :Toward Fast, Flexible, and Robust Low-Light Image Enhancement
本文提出:自校准照明 (Self-Calibrated Illumination,SCI) 学习框架,快速、灵活、鲁棒性好。SCI 模型在基于网络的微光图像增强领域重新定义了视觉质量、计算效率和下游任务性能的峰值点。原创 2022-05-23 02:13:19 · 4117 阅读 · 3 评论 -
基于强化学习的白盒照片后处理框架 -- Exposure: A White-Box Photo Post-Processing Framework
本文采用强化学习实现图像编辑,问题与方法契合度很高,因此是一个不错的思路。人为的图像编辑通常是采取不同操作[pdf]Fig. 1. Our method provides automatic and end-to-end processing of RAW photos, directly from linear RGB data captured by camera sensors to visually pleasing and display-ready images. Our sys原创 2022-01-28 20:35:29 · 2614 阅读 · 0 评论 -
基于双光照估计的曝光校正: Dual Illumination Estimation for Robust Exposure Correction
Dual Illumination Estimation for Robust Exposure Correction[pdf]AbstractExposure correction is one of the fundamental tasks in image processing and computational photography. While various methods have been proposed, they either fail to produce原创 2022-01-18 23:54:22 · 3857 阅读 · 1 评论 -
用一个网络实现曝光不足和曝光过度的曝光修正:Learning Multi-Scale Photo Exposure Correction
本文是第一个对欠曝光和过曝光用同一个网络实现校准的方法。个人认为本文最大的贡献是:1. 本文不是做图像增强,而是曝光错误进行修正。2. 提供了一个全新的、曝光时间范围更广的数据集。原创 2022-01-18 14:47:27 · 6933 阅读 · 1 评论 -
曝光修正相关工作:Related Work on the Exposure Correction
本博客对曝光校准的相关工作进行简单总结,内容选自 2021CVPR 文章:Learning Multi-Scale Photo Exposure Correction.原创 2022-01-18 14:27:14 · 2041 阅读 · 0 评论 -
基于 Retinex 的深度自正则化弱光图像增强
A Switched View of Retinex: Deep Self-Regularized Low-Light Image Enhancement[PAPER]Abstract Self-regularized low-light image enhancement does not require any normal-light image in training, thereby freeing from the chains on paired or unpair.原创 2021-03-01 13:20:33 · 2421 阅读 · 0 评论 -
一种结构和纹理感知 Retinex 模型 (2020 TIP) (2 of 2)
一种结构和纹理感知 Retinex 模型 (2020 TIP) (1 of 2)STAR: A Structure and Texture Aware Retinex Model[PAPER][GitHub]Fig. 1. An example to illustrate the applications of the proposed STAR model based on Retinex theory. (a) The input low-light and color-disto.原创 2021-02-27 20:06:58 · 1980 阅读 · 1 评论 -
一种结构和纹理感知 Retinex 模型 (2020 TIP) (1 of 2)
STAR: A Structure and Texture Aware Retinex Model[PAPER][GitHub]Fig. 1. An example to illustrate the applications of the proposed STAR model based on Retinex theory. (a) The input low-light and color-distorted image; (b) the estimated illumination.原创 2021-02-27 01:19:09 · 4691 阅读 · 1 评论 -
Low-Light Image Enhancement 弱光照图像增强算法 资源整理
Resources for Low Light Image Enhancementhttps://github.com/dawnlh/low-light-image-enhancement-resources-------------------------------------------------------------PaperTIP 2021Sparse Gradient Regularized Deep Retinex Network for Robust Low-Ligh原创 2021-02-25 23:43:06 · 7501 阅读 · 3 评论