【今日CV 计算机视觉论文速览 第130期】Thu, 13 Jun 2019

今日CS.CV 计算机视觉论文速览
Thu, 13 Jun 2019
Totally 39 papers
?上期速览更多精彩请移步主页

在这里插入图片描述

Interesting:

?LED2Netz照明条件估计的去雾和低光图像增强方法, 研究人员提出了一种基于环境光照估计的低光照图像去雾与细节提升算法。基于环境照明的估计,研究人员同时实现了大气光照估计、投射图估计和低光照提升三个任务。从FADE数据合成了雾图和低光图用于训练。结果表明这一算法对于图像细节提升和去雾具有十分优异的表现没有色差的晕轮。(from Chung-Ang University韩国中央大学)
网络主要进行了环境光照明(e illumination map)的估计,随后用于暗光增强和去雾,最后进行细节提升和优化:
在这里插入图片描述

一些结果的比较:
在这里插入图片描述
在这里插入图片描述
对于暗光增强的结果:
在这里插入图片描述
real world dataset:Fattal dataset [13]

?人体行为识别综述,综述了不同的行为识别方法、设备和分类。基于行为、移动和交互的行为识别以及十个不同的子类别,并综述了各个领域的最新研究结果的度量标准 (from 悉尼Macquarie University)
在这里插入图片描述
识别技术的分类:
在这里插入图片描述

?全天候全气候室外光照估计, (from adobe)

code:http://lvsn.github.io/allweather

?压缩模型过拟合用于图像超分辨, (from SIAT-SenseTime Joint Lab 中科院深圳)


Daily Computer Vision Papers

Presence-Only Geographical Priors for Fine-Grained Image Classification
Authors Oisin Mac Aodha, Elijah Cole, Pietro Perona
单独的外观信息通常不足以准确区分细粒度的视觉类别。人类专家利用其他线索,例如拍摄给定图像的位置和时间,以便为最终决定提供信息。该上下文信息在许多在线图像集合中容易获得,但是现有的图像分类器仅仅关注于基于图像内容进行预测而未充分利用。

LAEO-Net: revisiting people Looking At Each Other in videos
Authors Manuel J. Marin Jimenez, Vicky Kalogeiton, Pablo Medina Suarez, Andrew Zisserman
捕捉人们的相互凝视对于理解和解释他们之间的社会互动至关重要。为此,本文解决了在视频序列中检测人们看彼此LAEO的问题。为此,我们提出了LAEO Net,这是一个新的深度CNN,用于确定视频中的LAEO。与之前的作品相比,LAEO Net将时空轨迹作为输入和整个轨道的原因。它由三个分支组成,一个用于每个角色的跟踪头部,另一个用于相对位置。此外,我们介绍了两个新的LAEO数据集UCO LAEO和AVA LAEO。彻底的实验评估证明了LAEONet成功确定两个人是否是LAEO的能力以及它发生的时间窗口。我们的模型在现有的TVHID LAEO视频数据集上实现了最先进的结果,明显优于以前的方法。最后,我们将LAEO Net应用于社交网络分析,我们根据他们LAEO的频率和持续时间自动推断出一对人之间的社会关系。

Compressed Sensing MRI via a Multi-scale Dilated Residual Convolution Network
Authors Yuxiang Dai, Peixian Zhuang
磁共振成像MRI重建是一个主动的反问题,可以通过传统的压缩感知CS MRI算法来解决,该算法在基于迭代优化的方式中利用MRI的稀疏性质。然而,基于迭代优化的CSMRI方法的两个主要缺点是耗时且在模型容量方面受限。同时,最近基于深度学习的CSMRI的一个主要挑战是模型性能和网络规模之间的权衡。为了解决上述问题,我们开发了一种新的多尺度扩张网络,用于MRI重建,具有高速和卓越的性能。与具有相同感受野的卷积核相比,扩散卷积减少了较小核的网络参数,并扩展了核的接收域以获得几乎相同的信息。为了保持丰富的特征,我们提供全局和局部残差学习,以提取更多的图像边缘和细节。然后我们利用连接层融合多尺度特征和残差学习,以便更好地重建。与几种非深度和深度学习CSMRI算法相比,该方法可以提供更好的重建精度和明显的视觉改进。此外,我们执行噪声设置以验证模型稳定性,然后在MRI超分辨率任务上扩展所提出的模型。

**Handwritten Text Segmentation via End-to-End Learning of Convolutional Neural Network
Authors Junho Jo, Hyung Il Koo, Jae Woong Soh, Nam Ik Cho
我们通过端到端训练卷积神经网络CNN来提出一种新的手写文本分割方法。许多传统方法通过提取连接的组件然后对它们进行分类来解决该问题。然而,当手写组件和机器印刷部件重叠时,这两步方法具有局限性。与传统方法不同,我们针对此问题开发了端到端深度CNN,不需要任何预处理步骤。由于没有针对此目标的公开数据集,并且像素明智的注释耗时且成本高,我们还提出了一种生成实际训练样本的数据合成算法。为了训练我们的网络,我们开发了基于交叉熵的损失函数来解决不平衡问题。合成图像和真实图像的实验结果表明了该方法的有效性。具体而言,所提出的网络仅针对合成图像进行了训练,然而在真实文档中删除手写文本将OCR性能从71.13提高到92.50,显示了我们的网络和合成图像的泛化性能。

Towards Real-Time Head Pose Estimation: Exploring Parameter-Reduced Residual Networks on In-the-wild Datasets
Authors Ines Rieger, Thomas Hauenstein, Sebastian Hettenkofer, Jens Uwe Garbas
头部姿势是人体交流的关键组成部分,因此是人机交互的决定性因素。实时头部姿势估计在人类机器人交互或驾驶员辅助系统的背景下是至关重要的。用于头部姿势估计的最有希望的方法基于卷积神经网络CNN。然而,CNN模型通常太复杂而无法实现实时性能。为了应对这一挑战,我们探索了一个受欢迎的CNN子组,剩余网络ResNets并对其进行修改以减少参数数量。 ResNets针对不同的图像尺寸进行了修改,包括低分辨率图像和不同数量的图层。他们接受野生数据集的培训,以确保真实世界的适用性。因此,我们证明可以在减少参数数量的同时保持ResNets的性能。修改后的ResNets实现了最先进的精确度,并为实时适用性提供了快速推理。

Tackling Partial Domain Adaptation with Self-Supervision
Authors Silvia Bucci, Antonio D Innocente, Tatiana Tommasi
域适应方法已经显示出减少视域之间的边际分布差异的有希望的结果。它们允许训练
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值