我是想要一个demo,训练出一个mini型bert模型

了解了,你希望训练一个小型的BERT模型(类似BERT的简化版本),而不是使用现成的BERT预训练模型进行文本分类。以下是如何训练一个简单的、轻量级的MiniBERT模型的示例。我们会从头开始训练一个小型的Transformer模型(类似BERT,但规模较小),并进行文本分类任务。

1. 训练一个MiniBERT模型

为了训练一个迷你版的BERT模型,我们可以通过定义一个更小的Transformer架构,限制其参数数量。这将包括自定义嵌入层、Transformer编码器层,并在最后加一个分类头。我们使用PyTorch进行实现。

2. 代码实现

环境准备

确保已安装必要的库:

pip install torch transformers datasets
代码示例
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import AdamW
from datasets import load_dataset
from tqdm import tqdm

# 定义 MiniBERT 模型
class MiniBERT(nn.Module):
    def __init__(self, vocab_size, hidden_size, num_layers, num_labels):
        super(MiniBERT, self).__init__()
        # 嵌入层
        self.embeddings = nn.Embedding(vocab_size, hidden_size)
        
        # Transformer 编码器层
        encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_size, nhead=4)
        self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
        
        # 分类头
        self.fc = nn.Linear(hidden_size, num_labels)

    def forward(self, input_ids, attention_mask)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值