了解了,你希望训练一个小型的BERT模型(类似BERT的简化版本),而不是使用现成的BERT预训练模型进行文本分类。以下是如何训练一个简单的、轻量级的MiniBERT模型的示例。我们会从头开始训练一个小型的Transformer模型(类似BERT,但规模较小),并进行文本分类任务。
1. 训练一个MiniBERT模型
为了训练一个迷你版的BERT模型,我们可以通过定义一个更小的Transformer架构,限制其参数数量。这将包括自定义嵌入层、Transformer编码器层,并在最后加一个分类头。我们使用PyTorch进行实现。
2. 代码实现
环境准备
确保已安装必要的库:
pip install torch transformers datasets
代码示例
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import AdamW
from datasets import load_dataset
from tqdm import tqdm
# 定义 MiniBERT 模型
class MiniBERT(nn.Module):
def __init__(self, vocab_size, hidden_size, num_layers, num_labels):
super(MiniBERT, self).__init__()
# 嵌入层
self.embeddings = nn.Embedding(vocab_size, hidden_size)
# Transformer 编码器层
encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_size, nhead=4)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# 分类头
self.fc = nn.Linear(hidden_size, num_labels)
def forward(self, input_ids, attention_mask)