感受野(Receptive Field)

本文深入探讨了深度学习中CNN的感受野概念,详细解释了如何通过特定公式计算不同层间像素对应关系,帮助理解模型如何捕捉图像特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“感受野”:在CNN中,第n层特征图中一个像素,对应第1层(输入图像)的像素数,即为该层的Receptive Field,简称RF。

RF的计算可以通过公式:output_size = (input_size - filter_size + 2 * padding)/stride + 1 倒推获得。下面给出公式中各variable的含义:
output_size:输出卷积层的size
input_size:输入卷积层的size
filter_size:过滤器的size
padding:所使用的padding大小
stride:卷积步长

通过上述公式,我们可以退出第n+1卷积层一个像素所对应的第n层的“像素个数 n”,继续向前递推,我们可以求得第n层“n个像素”所对应的第n-1层的像素个数,一直递推,直到第1层。我们便可求得第n+1层一个像素所对应的第1层的像素个数。

参考博文:
【深度学习】一张图看懂Receptive Field]
关于感受野 (Receptive field) 你该知道的事

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值