“感受野”:在CNN中,第n层特征图中一个像素,对应第1层(输入图像)的像素数,即为该层的Receptive Field,简称RF。
RF的计算可以通过公式:output_size = (input_size - filter_size + 2 * padding)/stride + 1 倒推获得。下面给出公式中各variable的含义:
output_size:输出卷积层的size
input_size:输入卷积层的size
filter_size:过滤器的size
padding:所使用的padding大小
stride:卷积步长
通过上述公式,我们可以退出第n+1卷积层一个像素所对应的第n层的“像素个数 n”,继续向前递推,我们可以求得第n层“n个像素”所对应的第n-1层的像素个数,一直递推,直到第1层。我们便可求得第n+1层一个像素所对应的第1层的像素个数。
参考博文:
【深度学习】一张图看懂Receptive Field]
关于感受野 (Receptive field) 你该知道的事