18、生成对抗网络用于遗产图像超分辨率重建

生成对抗网络用于遗产图像超分辨率重建

遗产图像对于任何文明来说都是重要的资产,需要进行数字化保存。本文主要探讨了利用生成对抗网络(GAN)进行遗产图像超分辨率重建(SRR)的方法,通过改进损失函数优化GAN模型,以提高重建质量。

1. 基于GAN的SRR

传统基于深度学习的遗产图像SRR方法(如方法[4])依赖于CNN模型的高效训练,但该模型数据需求大,缺乏足够相关训练数据会导致无法保留估计遗产图像中的多样纹理内容。而且,基于PSNR或MSE的损失函数在重建过程中无法保留足够的高频细节。

相比之下,GAN模型是一种新兴技术,即使在较大缩放因子下也能通过保留真实纹理内容提供出色的重建精度。GAN模型能生成与真实数据非常相似的数据,使用适当的损失函数可以保留遗产图像中常见的复杂纹理内容。因此,基于GAN的SRR框架比基于CNN的SRR方法能产生更真实、视觉上更令人满意的高分辨率(HR)解决方案。GAN模型不仅用于自然图像的SRR,还应用于视频超分辨率、医学图像超分辨率和遥感图像SRR等领域。

GAN模型包含两个对抗块:
- 生成器块(GB) :由参数θGe 表示为 (GθGe)。初始时,GB作为前馈CNN模型通过对抗训练过程进行训练,目标是通过最小化生成器训练损失lossGTP ,捕捉n个训练HR图像和LR图像之间的共现先验,以生成与真实HR图像(IGT )高度相似的超分辨率HR图像(ISRHR )。在测试阶段,将测试LR图像ILR 输入GB块得到ISRHR 。
- 判别器块(DB) :由参数θDi 表示为 (DBθDi)。通过最大化对抗损失lossAdv 进行训练,激

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值