21、手势与面部识别技术:从原理到实践

手势与面部识别技术:从原理到实践

1. 手势识别系统研究

1.1 实验设置与模型对比

研究人员进行了不同视角和隐藏单元下的 BiLSTM 和 GRU 训练实验。实验在 Matlab R2020a(执行模式为 CPU),安装于配备 16GB RAM 的联想 ThinkPad 上进行。训练视角包括前视图、中间视图、侧视图和混合视图,隐藏单元设置为 60 和 120。

训练视图 BiLSTM(120)准确率 GRU(120)准确率
前视图 55.89% 70.78%
中间视图 48.89% 60.89%
侧视图 42.33% 49.78%
混合视图 58.22% 69.59%

从表格数据可以看出,在各个训练视图下,GRU(120)的准确率均高于 BiLSTM(120)。例如在前视图训练时,GRU(120)比 BiLSTM(120)高出 14.89%。

1.2 性能分析

    内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值