25、板球击球动作识别:基于硬分配和软分配的视觉词袋方法

板球击球动作识别:基于硬分配和软分配的视觉词袋方法

1. 引言

体育活动识别是一个活跃的研究领域,主要包括基于传感器数据的分析和基于视觉的分析两个子领域。基于传感器的分析虽然能提供准确的测量和深入的分析,但大多数体育赛事不允许运动员佩戴额外的设备。而基于视觉的分析容易受到外部因素的干扰,如相机运动、光照、遮挡和视角变化等。

体育活动识别面临的主要问题是缺乏标注数据,大规模、细粒度标注的特定体育数据集难以获取且创建过程繁琐。研究人员通常使用预训练模型或传统学习方法结合小标注数据集来解决简单任务,并在半监督标注框架中生成推荐。

原始体育赛事转播视频可作为简单识别任务的训练数据,训练好的模型可用于构建运动员档案、辅助教练分析、自动提取事件和生成精彩片段。在板球比赛中,自动识别击球动作类型具有挑战性,本文聚焦于基于击球方向或相机运动识别击球的粗略类别。

视觉词袋(BoV)模型已被证明在序列任务中表现良好,可应用于特定领域的体育视频。本文使用BoV模型,比较基于光流和2D/3D ResNet提取的全局描述符的硬分配(HA)和软分配(SA)方法,实验表明运动特征变体是分类板球击球的良好全局描述符。

2. 相关研究

视觉活动识别在板球领域已有一些应用。例如,HawkEye系统用于跟踪球的位置和预测轨迹,广泛应用于国际赛事。此外,还有一些研究致力于板球转播视频的索引、语义概念挖掘、自动精彩片段生成等。

然而,以往的研究存在一些局限性。一些研究使用手工特征,难以在其他数据集上泛化;一些研究的数据集样本较少,缺乏大规模标注数据。本文使用Gupta等人的数据集,包含2016年T20世界杯26个未修剪的精彩视频中的562

内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序清理。 阅读建议:由于本资源涉及较多底层概念技术细节,建议读者先复习C语言基础知识,特别是指针内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值