板球击球识别与多语言印度文本检测技术解析
板球击球识别
在板球击球识别的研究中,主要是在视觉词袋(Bag of Visual Words)的框架下进行建模。识别工作针对两个粒度级别展开,分别考虑了 3 种和 5 种击球类别。
- 特征提取与模型训练 :
- 从训练集中提取的特征会进行聚类,以创建视觉运动词的码本。每个视频会被表示为这些码本词的直方图。
- 经过逆文档频率(IDF)加权后,训练线性支持向量机(SVM),用于在验证集和测试集上进行评估。
- 特征类型 :
- 基于网格的采样 :该特征考虑位于等间距网格交点处的流值。
- 方向直方图 :取具有显著运动的像素,并在 [0, 2π] 的均匀区间划分上创建直方图。
评估结果
- 不同特征的分类准确率 :
| 特征 | 类别数量 | 正确分类数量/总样本数 | 准确率 |
| — | — | — | — |
| OF Grid 20(5 类别) | 5 | 87/106 | 82.08% |
| HOOF(3 类别) | 3 | 91/106 | 85.85% | - 不同特征在不同参数下的准确率 :
| 特征 | Params | #Words HA | 准确率 | Params | #Words SA | 准确率 |
| — | — | — | —