移动设备多语言印度文本检测器与面部遮挡检测重建技术
在当今的技术领域,文本检测和面部遮挡处理是计算机视觉中的重要研究方向。下面将分别介绍移动设备多语言印度文本检测器以及基于GAN的面部遮挡检测与重建技术。
移动设备多语言印度文本检测器
为了评估该文本检测方法的效率,使用了一系列指标,以下是具体指标介绍:
- 交并比(IoU) :是预测边界框(Bp)与实际真实边界框(Bgt)的交集与并集的比值。IoU值越高,预测边界框越接近真实值。公式如下:
[ IOU = \frac{(Bgt \cap Bp)}{(Bgt \cup Bp)} ]
- 精确率(Precision) :是真正例(TP)与预测正例总数的比值。公式为:
[ Precision = \frac{TP}{TP + FP} ]
- 召回率(Recall) :也称为灵敏度,是真正例与真实正例总数的比值。公式为:
[ Recall = \frac{TP}{TP + FN} ]
其中,TP为真正例,TN为真负例,FN为假负例,FP为假正例。
- 平均精度均值(mAP) :通过对类别(这里是“文本”)和/或所有阈值的平均精度(AP)计算得出。在本次实验中,采用单一阈值0.5。要获得特定类别的AP,需要计算精确率 - 召回率曲线下的面积。mAP值介于0和1之间,用于估计准确性。
- F1分数 :结合了召回率和精确率,通过取它们的调和平均值得到。
实验使用的数据