面部遮挡检测与重建及印度阿育吠陀药用植物识别研究
面部遮挡检测与重建
在图像领域,DCGAN是标准GAN的变体,它与传统GAN功能相似,但专注于使用“深度卷积网络”而非全连接网络。卷积网络主要处理与图像相关的领域,即处理空间相关性。在训练过程中,在判别器的块之间引入了谱归一化,同时使用注意力层来灵活处理特征。部分模型使用两个判别器,一个全局判别器关注整个图像并将其作为一个整体处理,另一个局部判别器关注完成区域以确保局部一致性。而这里的图像补全网络仅使用单个判别器,输入为损坏图像及其地标,即$D(I, L; θ_D)$,其中$θ_D$是判别器的参数。使用单个判别器的原因如下:
1. 生成结果受地标控制,已确保全局结构。
2. 注意力层更注重属性的一致性。
损失函数
图像补全模块的训练损失函数由逐像素损失、风格损失、感知损失和对抗损失组成。
1. 逐像素损失 :定义为$L_{pixel} = \frac{1}{N_m} \left\lVert \hat{I} - I \right\rVert_1$,其中$\left\lVert.\right\rVert$指$l_1$范数,$N_m$是掩码大小,用于调整惩罚。若面部受少量噪声或遮挡限制,最终结果应与真实图像密切相关;若遮挡较大,可在保持结构和一致性的前提下放宽干扰。
2. 风格损失 :用于将实际图像的风格转移到输出图像,计算输入和输出图像之间的风格差异,公式为$L_{style} = \sum_{p} \frac{1}{N_p * N_p} \left\lVert \frac{G_p(\hat{I} \circ M)