28、面部遮挡检测与重建及印度阿育吠陀药用植物识别研究

面部遮挡检测与重建及印度阿育吠陀药用植物识别研究

面部遮挡检测与重建

在图像领域,DCGAN是标准GAN的变体,它与传统GAN功能相似,但专注于使用“深度卷积网络”而非全连接网络。卷积网络主要处理与图像相关的领域,即处理空间相关性。在训练过程中,在判别器的块之间引入了谱归一化,同时使用注意力层来灵活处理特征。部分模型使用两个判别器,一个全局判别器关注整个图像并将其作为一个整体处理,另一个局部判别器关注完成区域以确保局部一致性。而这里的图像补全网络仅使用单个判别器,输入为损坏图像及其地标,即$D(I, L; θ_D)$,其中$θ_D$是判别器的参数。使用单个判别器的原因如下:
1. 生成结果受地标控制,已确保全局结构。
2. 注意力层更注重属性的一致性。

损失函数

图像补全模块的训练损失函数由逐像素损失、风格损失、感知损失和对抗损失组成。
1. 逐像素损失 :定义为$L_{pixel} = \frac{1}{N_m} \left\lVert \hat{I} - I \right\rVert_1$,其中$\left\lVert.\right\rVert$指$l_1$范数,$N_m$是掩码大小,用于调整惩罚。若面部受少量噪声或遮挡限制,最终结果应与真实图像密切相关;若遮挡较大,可在保持结构和一致性的前提下放宽干扰。
2. 风格损失 :用于将实际图像的风格转移到输出图像,计算输入和输出图像之间的风格差异,公式为$L_{style} = \sum_{p} \frac{1}{N_p * N_p} \left\lVert \frac{G_p(\hat{I} \circ M)

内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值