植物识别与AI相机意图分析技术研究
1. 植物识别特征提取方法
1.1 特征提取概述
特征提取可减少描述图像或视频所需的表示数量,提取的特征应具有信息性和非冗余性,以促进泛化。在植物识别中,采用了空间、光谱和机器学习特征。
1.2 空间特征
1.2.1 矩特征
矩在尺度、平移和旋转下具有不变性。基本矩、中心矩(平移不变)和归一化矩(尺度和平移不变)的计算公式如下:
- 基本矩:$M_{pq} = \sum_{x}\sum_{y} I(x,y)x^py^q$,其中$p + q$表示矩的阶数,这里考虑到3阶。
- 中心矩:$l_{pq} = \sum_{x}\sum_{y} I(x,y) (x - \bar{x})^p (y - \bar{y})^q$,其中$\bar{x} = \frac{M_{10}}{M_{00}}$,$\bar{y} = \frac{M_{01}}{M_{00}}$是质心的分量。
- 归一化矩:$\mu_{pq} = \frac{l_{pq}}{M_{00}^{\frac{p + q}{2} + 1}}$
1.2.2 梯度直方图(HOG)特征
HOG特征描述符统计图像局部区域中梯度方向的出现次数,关注图像的结构和边缘方向。提取HOG特征描述符的步骤如下:
1. 用大小为$K \times K$的窗口计算每个像素在$x$和$y$方向上的梯度。
2. 计算梯度的大小和方向。
3. 使用梯度的大小和方向创建直方图(大小为$H$)。
4. 在大小为$B \times C$的块上归一化梯度的大小。