30、基于领域知识嵌入的多模态意图分析

基于领域知识嵌入的多模态意图分析

1. 引言

在多模态意图分析领域,我们提出了一种基于领域知识嵌入的多模态方法。该方法旨在提高意图分类的准确性,通过融合文本和图像信息,并引入领域知识嵌入,使模型能够更准确地理解用户的意图。

2. 相关工作

之前的研究在单文本、单图像以及多模态意图分析方面采用了多种不同的方法:
- 文本意图分析 :如使用卷积神经网络(CNN)进行句子级分类,或者利用随机森林和决策树算法对亚马逊产品评论进行情感极性分类。
- 图像意图分析 :在社交媒体情感分类等应用中,结合不同模态信息进行分析。
- 多模态意图分析 :有多种方法用于对互联网表情包进行分类、检测社交媒体上的仇恨言论等。

与以往的模型相比,我们对基线多模态模型进行了增强,并通过连接提出的领域知识嵌入通道,使其更加鲁棒。

3. 分类体系

为了捕捉图像和相关文本内容之间关系的不同方面,我们提出了3种意图分类:
- 产品购买兴趣 :用户试图获取图像中产品的购买信息。
- 通用信息查询 :用户希望获取图像中物体的更多信息。
- 电影信息查询 :用户想了解图像中电影海报的更多信息。

4. 数据集

数据集包含3个类别:美容(产品购买兴趣)、电影(电影信息查询)和信息(通用信息查询)。每个类别都包含文本和图像数据,以CSV文

内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值