利用深度卷积神经网络和迁移学习进行年龄和性别预测
1. 引言
在当今数据驱动的世界里,随着互联网上图像上传率的增加,年龄和性别预测已成为深度学习中备受关注的领域。人类在判断性别、识别他人和判断种族方面有一定能力,但年龄估计仍然是一个难题。评估年龄预测常用的指标是平均绝对误差(MAE),研究表明人类预测15岁以上人群年龄的MAE在7.2 - 7.4岁之间。
年龄预测困难的原因在于,面部衰老不仅受遗传因素影响,还与生活方式、表情和环境有关。不同年龄的人可能外貌差异很大,而且面部图像与年龄/性别之间是非线性关系,同时缺乏大规模、均衡且标注正确的数据集。大多数可用数据集存在严重的不平衡问题,如大部分人年龄在20 - 75岁之间,或者对某一性别有偏差。使用有偏差的数据集会导致在实时图像测试时出现分布不匹配,从而得到较差的结果。
不过,这个领域具有巨大的潜在价值,在人机交互、法医学、执法和安全控制等领域都有应用。例如,餐厅可以通过估计进入人员的平均年龄或性别来改变主题。
2. 相关工作
早期的年龄和性别预测方法主要基于面部特征的比例测量,如眼睛、鼻子的大小,下巴到额头的距离等,这种方法被称为人体测量法。后来,人们开始手动提取特征,如PCA、LBP、Gabor、LDA、SFP等,并将这些特征输入到经典的机器学习模型中,如支持向量机、决策树和逻辑回归。
近年来,卷积神经网络(CNN)在年龄和性别预测中得到了广泛应用。CNN能够在遮挡、倾斜和亮度变化的面部图像上取得出色的效果,这得益于它强大的特征提取能力。它通过对图像进行卷积操作生成不变特征,并将这些特征依次传递到下一层。第一个应用的CNN是Le - Net - 5,而真正推动CNN