年龄与性别预测及文本行分割技术解析
年龄与性别预测
在年龄和性别预测的研究中,不同的优化器和特征提取器展现出了不同的性能。
-
优化器性能比较
- 实验结果显示,Adam及其变体(如Adamax)表现最佳,收敛速度更快。
- 与之对比,使用随机梯度下降(SGD)训练的模型学习速度缓慢,尤其是在处理年龄估计任务时,更早达到饱和状态。
-
特征提取器性能对比
- 对不同特征提取器进行了性能比较,结果如下表所示:
| 特征提取器 | 年龄估计(MAE) | 性别分类(准确率) |
| — | — | — |
| VGG_f | 4.86 | 93.42 |
| ResNet50_f | 4.65 | 94.64 |
| SENet50_f | 4.58 | 94.94 | - 从表中可以看出,SENet - 50_f提取的特征在年龄估计和性别分类两个任务中均表现最优,尽管VGG_f训练的层数更多。
- 对不同特征提取器进行了性能比较,结果如下表所示:
-
与其他工作的对比
- 与其他相关研究的对比结果如下表:
| 方法 | 年龄估计(MAE) |
| — | — |
| 线性回归 | 11.73 |
| ResNet50 | 9.66 |
| Inception
- 与其他相关研究的对比结果如下表: