34、基于YOLO - V2的实时多手势识别系统研究

基于YOLO - V2的实时多手势识别系统研究

1. 方法概述

在无约束环境下进行实时多手势识别,提出了基于YOLO - V2的单阶段卷积神经网络(CNN)框架。YOLO - V2克服了诸如单阶段多框检测器(SSD)和基于区域的快速卷积神经网络(Faster - RCNN)等其他识别系统所面临的挑战。它是传统YOLO架构的改进版本,提高了预测精度和计算速度,并且利用DarkNet - 19 CNN架构作为从图像中提取特征向量的骨干网络。

1.1 数据集及预处理

使用了三个数据集进行模型的训练和评估,包括NUS Hand posture - II(NUSHP - II)数据集、Senz 3D hand dataset(SENZ - 3D)和自定义的MITI Hand Dataset(MITI - HD)。以下是数据集的详细信息:
- MITI - HD数据集 :从一组人群中收集的个性化手部动作数据集,包含不同肤色、复杂背景、各种尺寸、光照变化和几何形状等参数。该数据集有10个分类,每个分类有750个数据样本,总计7500个样本。
- 数据预处理步骤
1. 使用自适应插值技术将所有样本重新调整为300×300像素的尺寸。
2. 在图像区域点外添加白色像素以保持宽高比。
3. 进行感兴趣区域(ROI)选择,即标注,这是一种在帧上指定区域的机器学习方法。
4. 按照80:20的比例划分训练和测试数据样本。
5. 数据样本分离后进行特征提取和训练过程。

1.2 YOLO - V2模型架构

    <
内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值