利用低成本传感器技术进行人体步态异常检测
1. 引言
在当今世界,生物识别技术已广泛应用于各个领域,从临床应用到安全系统。人体步态是健康状况的重要标志,对步态的研究有助于获取有关神经系统疾病(如帕金森病或糖尿病)发展的重要信息。通过跟踪和分析这些步态信息,可以早期发现疾病,为患者找到最佳解决方案。
分析步态模式主要有两种方法:可穿戴传感器和非可穿戴传感器。非可穿戴传感器技术又可分为基于标记和无标记两种方法。无标记方法的优点是无需与受试者直接身体接触,可在更远距离获取数据。其中,微软 Kinect 传感器因其成本效益高和设置要求低,在步态分析中吸引了众多研究人员。利用 Kinect 深度图像序列可以创建基于外观的步态模型,比基本的灰度方法包含更多信息。
本研究旨在通过理解受试者步态序列的深度图像,创建一个用于病理步态检测的模型。使用单个 Kinect 传感器垂直放置在受试者左侧,让受试者模拟马蹄足步态模式以收集异常步态数据。该方法的潜在用途之一是自动特征学习,可用于发现患有马蹄足畸形的患者,这是脑瘫患者常见的特征,有助于判断步态异常。与临床医生使用的现有方法相比,本方法定量评估步态动态,结果更可靠,且是一种经济高效的步态异常检测设备。
2. 相关工作
许多研究人员应用机器学习算法(如逻辑回归、支持向量机、隐马尔可夫模型和聚类),利用 Kinect 骨骼数据检测异常步态模式。这些方法属于基于模型的人体步态分析方法,而无模型方法则侧重于人体轮廓形状或整体运动。无模型方法的优点是计算成本低于基于模型的方法,这促使我们在这一方向开展研究。
有研究通过提取受试者的活动轮廓来检测行为异常,并与通过分析多个人的步态模式构建的基础模型