37、孟加拉语地名识别与青少年面部验证研究

孟加拉语地名识别与青少年面部验证研究

1. 孟加拉语地名识别

1.1 深度学习与迁移学习

深度学习在图像分类领域取得了显著成就,但从头开始为每个新数据集训练深度学习模型并非可行方案。因为这不仅需要新数据集的标注样本,还会消耗大量的时间和资源。

一种可行的解决方案是迁移学习,即冻结初始层的权重,仅在新数据集上训练网络时学习前几层的权重。不过,这种设置仍需要新数据集中的一些标注样本。另一种方法是使用已学习的模型权重,并利用该模型从新数据集的图像中提取特征,本研究采用了这种方法。

1.2 实验设置与结果

1.2.1 数据集

本研究使用了包含 608 个类别的 60800 张图像数据集,以及一个全新的包含 270 张手写城市名称单词图像(来自 3 个类别)的数据集,这两个数据集的类别没有交集,且所有文本均为孟加拉语书写。

1.2.2 模型与评估指标

使用了五种标准的卷积神经网络(CNN)架构:ResNet152 V2、MobileNet V2、Xception Net、Inception V3 和 VGG16。评估指标包括准确率、训练轮数、模型大小和预测时间。

1.2.3 地名预测结果
Network Fold 0 Fold 1 Fold 2 Fold 3 Fold 4
内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值