基于深度学习的面部与图像情感识别技术解析
在当今科技发展的浪潮中,情感识别技术逐渐成为研究热点,尤其是在面部情感识别和图像情感识别领域。本文将深入探讨两种基于深度学习的情感识别技术,一种是针对戴口罩面部图像的情感识别系统(DFERSFM),另一种是利用图像字幕进行图像情感识别的领域自适应技术。
戴口罩面部图像情感识别系统(DFERSFM)
相关研究背景
在过去几十年里,面部情感识别领域开展了广泛的研究。然而,实时场景中的遮挡问题一直是精确面部情感识别系统面临的主要挑战之一。在现实生活环境中,面部的一部分很可能被口罩、太阳镜、手、胡须或头发遮挡。过去的研究提出了多种方法来解决这一问题,如使用几何面部特征、主成分分析(PCA)、支持向量机(SVM)、Gabor小波等。但大多数工作集中在有限数量的人工创建的遮挡类型上,且进展相对缓慢。
提出的架构
本文提出了一种基于卷积神经网络(CNN)的面部情感识别系统,用于处理戴口罩的面部图像。该CNN框架由三个卷积块进行特征提取,随后是两个密集层块。每个卷积块由一个卷积层、批量归一化层、激活函数层和池化层组成。第一个密集块包含一个全连接(FC)层,后面跟着批量归一化和激活函数;第二个密集块是一个FC层,后面跟着Softmax函数进行分类。
层 | 详细信息 |
---|---|
输入图像 | 201 × 131 × 1 |
Conv1 |