41、基于领域自适应的图像情感识别技术

基于领域自适应的图像情感识别技术

1. 研究背景与贡献

在图像情感识别(IER)领域,目前存在着一些挑战,如缺乏足够的情感标注图像数据集和预训练的 IER 模型,以及现有方法在提取图像中与情感相关信息时的局限性。为了解决这些问题,提出了一种创新的技术,该技术能够识别包含人脸、非人脸和非人类元素的通用图像中的情感。具体做法是,通过图像字幕生成图像描述,并重新训练文本情感识别(TER)模型,将字幕分类为适当的情感类别,由于图像字幕与图像存在一对一的映射关系,因此将字幕预测的情感标签视为图像的情感标签,最终实现了 59.17% 的情感分类准确率。

2. 相关工作
  • 基于特征的语义图像分析 :早期的 IER 主要使用形状、边缘和颜色等低级特征。后来发现,像光学平衡和构图这样的中级特征也对图像美学有贡献,也被应用于图像情感分类。还有工作利用图像的语义内容进行情感分析。但这些方法使用的手工特征难以涵盖所有低级、中级特征和图像语义。
  • 基于维度和类别的视觉情感分类 :IER 方法可以基于情感维度和类别进行分类。维度情感空间(DES)方法使用效价 - 唤醒 - 控制情感空间来描述和表示各种情感状态;而基于类别情感状态(CES)的方法将计算结果映射到离散的情感类别,由于其更易于理解,因此更常用。本文提出的方法基于 CES,将给定图像分类为快乐、悲伤、仇恨和愤怒等情感类别。
  • 基于深度学习的图像情感识别方法 :卷积神经网络(CNN)在对象分类、图像识别等计算机视觉任务中取得了成功,它能够以端到端的方式提取视觉特征,无需人工干预。
内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值