42、手语视频中的手势识别:基于手部位置跟踪和形状的内侧表示

手语视频中的手势识别:基于手部位置跟踪和形状的内侧表示

在过去的二十年里,手语识别系统一直是一个备受关注的研究领域,它涉及到手势控制系统、人机交互界面、3D 对象分析以及许多其他模式识别和计算机视觉技术等多个领域。然而,目前尚未找到一种通用且高效的方法来识别静态和动态手语。

1. 问题陈述
  • 定义相关概念
    • 手势 :手势 G 被定义为身体部位(特别是手或头部)的运动,以表达想法或意义,表现为一系列图像 (I1, …, I|G|),其中 Ij 属于 Rm×n,j = 1, |G|,是包含手势 G 的视频帧。
    • 二值图像上的斑点 :二值图像 I 上的斑点 S 是一个多边形图形,近似于该图像的连通分量。多边形图形的边界是具有最小周长的分隔多边形。
    • 斑点的内侧表示 :二值图像上斑点 S 的内侧表示 M(S) 定义为其形态骨架 Sk = (V, E) 的对 (Sk, R),其中 V 和 E 分别是其顶点和边的集合。径向函数 R : V → R,将每个顶点与以该顶点为中心的最大内切圆的半径相关联。
    • 关键对象 :关键对象定义为感兴趣的区域,即面部 F、左手 L 和右手 R。
    • 对象的轨迹 :视频序列 G = (I1, …, I|G|) 中对象 ω ∈ {F, L, R} 的轨迹 T ω(G) 定义为一系列六元组 (x, y, r, vx, v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值