43、手势识别与表格检测技术:创新方法与实验成果

手势识别与表格检测技术:创新方法与实验成果

在当今科技飞速发展的时代,手势识别和表格检测技术在众多领域展现出了巨大的应用潜力。手势识别技术能够实现人与机器之间更加自然和直观的交互,而表格检测技术则为数字化文档的自动化分析提供了关键支持。下面将深入探讨这两项技术的创新方法和实验成果。

手势识别:基于轨迹与形态的综合方法

轨迹相似度计算

在手势识别的决策初期,需要计算待分类手势轨迹与所有参考手势轨迹的相似度。具体步骤如下:
1. 轨迹归一化 :将待分类手势和参考手势的轨迹沿 x 轴进行成对归一化,使它们在该轴上的坐标变化区间相同。参考手势的归一化轨迹记为 ˜x。
2. 距离矩阵计算 :考虑归一化因素,计算轨迹点之间的成对距离矩阵 W。矩阵元素的计算公式为:
[
W_{p,q} = \sqrt{(x_{k,L}^p - \tilde{x} L^q)^2 + (y {k,L}^p - y_L^q)^2} + \sqrt{(x_{k,R}^p - \tilde{x} R^q)^2 + (y {k,R}^p - y_R^q)^2}
]
其中,p = 1, |Gk|,q = 1, |G|。
3. 矩阵 U 填充 :按 p + q 递增的顺序逐步填充矩阵 U。具体规则如下:
- (U_{1,1} = W_{1,1})
- (U_{p,1} = U_{p - 1,1} + W_{p,1}),p = 2, |Gk|
- (U_{1,q} =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值